Millipore Sigma Vibrant Logo
 

neural


3453 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (2,739)
  • (537)
  • (22)
  • (11)
  • (8)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Human neural stem cells overexpressing choline acetyltransferase restore cognitive function of kainic acid-induced learning and memory deficit animals. 21929870

    Alzheimer disease (AD) is a progressive neurodegenerative disease, which is characterized by loss of memory and cognitive function. In AD patients dysfunction of the cholinergic system is the main cause of cognitive disorders, and decreased activity of choline acetyltransferase (ChAT), an enzyme responsible for acetylcholine (ACh) synthesis, is observed. In the present study we investigated if brain transplantation of human neural stem cells (NSCs) genetically modified to encode ChAT gene improves cognitive function of kainic acid (KA)-induced learning deficit rats. Intrahippocampal injection of KA to hippocampal CA3 region caused severe neuronal loss, resulting in profound learning and memory deficit. F3.ChAT human NSCs transplanted intracerebroventricularly improved fully the learning and memory function of KA-induced learning deficit animals, in parallel with the elevation of ACh levels in cerebrospinal fluid. F3.ChAT human NSCs migrated to the KA-induced injury site (CA3) and differentiated into neurons and astrocytes. The present study demonstrates that human NSCs expressing ChAT have lesion-tropic property and improve cognitive function of learning deficit model rats with hippocampal injury by increasing ACh level.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1273
    Product Catalog Name:
    Anti-Mitochondria Antibody, surface of intact mitochondria, clone 113-1
  • Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: differentiation and structural integration into the segmental motor circuitry. 19326469

    Cell replacement strategies for degenerative and traumatic diseases of the nervous system depend on the functional integration of grafted cells into host neural circuitry, a condition necessary for the propagation of physiological signals and, perhaps, targeting of trophic support to injured neurons. We have recently shown that human neural stem cell (NSC) grafts ameliorate motor neuron disease in SOD1 transgenic rodents. Here we study structural aspects of integration of neuronally differentiated human NSCs in the motor circuitry of SOD1 G93A rats. Human NSCs were grafted into the lumbar protuberance of 8-week-old SOD1 G93A rats; the results were compared to those on control Sprague-Dawley rats. Using pre-embedding immuno-electron microscopy, we found human synaptophysin (+) terminals contacting the perikarya and proximal dendrites of host alpha motor neurons. Synaptophysin (+) terminals had well-formed synaptic vesicles and were associated with membrane specializations primarily in the form of symmetrical synapses. To analyze the anatomy of motor circuits engaging differentiated NSCs, we injected the retrograde transneuronal tracer Bartha-pseudorabies virus (PRV) or the retrograde marker cholera toxin B (CTB) into the gastrocnemius muscle/sciatic nerve of SOD1 rats before disease onset and also into control rats. With this tracing, NSC-derived neurons were labeled with PRV but not CTB, a pattern suggesting that PRV entered NSC-derived neurons via transneuronal transfer from host motor neurons but not via direct transport from the host musculature. Our results indicate an advanced degree of structural integration, via functional synapses, of differentiated human NSCs into the segmental motor circuitry of SOD1-G93A rats.
    Document Type:
    Reference
    Product Catalog Number:
    MAB332
  • The neural cell adhesion molecule is involved in the metastatic capacity in a murine model of lung cancer. 20191608

    Neural cell adhesion molecule (NCAM) is involved in cell growth, migration, and differentiation. Its expression and/or polysialylation appear to be deregulated in many different cancer types. We employed the lung tumor cell line LP07, syngeneic in BALB/c mice to investigate the role of NCAM in malignant progression. LP07 cells express the three main NCAM isoforms, all of them polysialylated. This cells line, pretreated with an anti-NCAM antibody and inoculated intravenously (i.v.) into syngeneic mice, developed less and smaller lung metastases. In vitro studies showed that NCAM bound antibody inhibited cell growth, mainly due to an increase in apoptosis, associated with a decrease of cyclin D1 and enhanced expression of active caspase 3 and caspase 9. Anti-NCAM-treated LP07 cells showed impairment in their ability to migrate and adhere to several extracellular matrix components. Secreted uPA activity was also reduced. NCAM-140 knocked-down by siRNA in LP07 cells pretreated or not with anti-NCAM showed an impaired metastasizing ability upon i.v. inoculation into mice. These results suggest that anti-NCAM treatment could be mimicking homophilic trans-interactions and NCAM-140 knocked-down impairs heterophilic interactions, both leading to inhibition of metastatic dissemination. The involvement of NCAM in lung tumor progression was confirmed in human NSCLC tumors. Sixty percent of the cases expressed NCAM at tumor cell level. A multivariate analysis indicated that NCAM expression was associated with a shorter overall survival in this homogeneous series of Stages I and II NSCLC patients. NCAM may be able to modulate mechanisms involved in lung carcinoma progression and represents an attractive target to control metastatic progression.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5324
    Product Catalog Name:
    Anti-Polysialic Acid-NCAM Antibody, clone 2-2B
  • The neural adhesion molecule TAG-1 modulates responses of sensory axons to diffusible guidance signals. 18550718

    When the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed. Focussing on the pathfinding of TrkA+ NGF-dependent axons, we demonstrate for the first time that their axons project prematurely into the dorsal horn of both L1 and TAG-1 knockout mice. We show that axons lacking TAG-1, similar to those lacking L1, are insensitive to wild-type ventral spinal cord (VSC)-derived chemorepellants, indicating that adhesion molecule function is required in the axons, and that this loss of response is explained in part by loss of response to Sema3A. We present evidence that TAG-1 affects sensitivity to Sema3A by binding to L1 and modulating the endocytosis of the L1/neuropilin 1 Sema3A receptor complex. However, TAG-1 appears to affect sensitivity to other VSC-derived chemorepellants via an L1-independent mechanism. We suggest that this dependence of chemorepellant sensitivity on the functions of combinations of adhesion molecules is important to ensure that axons project via specific pathways before extending to their final targets.
    Document Type:
    Reference
    Product Catalog Number:
    MAB324
    Product Catalog Name:
    Anti-Neuron Specific Enolase Antibody, clone 5E2
  • The neural cell adhesion molecule promotes FGFR-dependent phosphorylation and membrane targeting of the exocyst complex to induce exocytosis in growth cones. 21389209

    The exocyst complex is an essential regulator of polarized exocytosis involved in morphogenesis of neurons. We show that this complex binds to the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes FGF receptor-mediated phosphorylation of two tyrosine residues in the sec8 subunit of the exocyst complex and is required for efficient recruitment of the exocyst complex to growth cones. NCAM at the surface of growth cones induces Ca(2+)-dependent vesicle exocytosis, which is blocked by an inhibitor of L-type voltage-dependent Ca(2+) channels and tetanus toxin. Preferential exocytosis in growth cones underlying neurite outgrowth is inhibited in NCAM-deficient neurons as well as in neurons transfected with phosphorylation-deficient sec8 and dominant-negative peptides derived from the intracellular domain of NCAM. Thus, we reveal a novel role for a cell adhesion molecule in that it regulates addition of the new membrane to the cell surface of growth cones in developing neurons.
    Document Type:
    Reference
    Product Catalog Number:
    MABT186
    Product Catalog Name:
    Anti-Exo70 Antibody, clone 70X13F3
  • The neural stem cell line CTX0E03 promotes behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-dependent fashion. 19633272

    BACKGROUND: This study investigated behavioral recovery in rats following implanting increasing doses of CTX0E03 cells into the putamen ipsilateral to the stroke damage. Postmortem histological analysis investigated possible mechanisms of behavioral recovery. METHODS: . At 4 weeks after middle cerebral artery occlusion (MCAO), rats were treated with 4500, 45,000, or 450,000 CTX0E03 cells or vehicle implanted into the putamen with testing on a battery of tasks preocclusion and postocclusion. Histological examination of brains included assessment of lesion volumes, implant cell survival and differentiation, changes to host brain matrix, angiogenesis, and neurogenesis using immunohistochemical methods. RESULTS: . Statistically significant dose-related recovery in sensorimotor function deficits (bilateral asymmetry test [BAT; P < .0002] in the mid- and high-dose groups and rotameter test after amphetamine exposure [P < .05] in the high-dose group) was found in the CTX0E03 cell implanted groups compared to the vehicle group. In-life functional improvements correlated with cell dose, though did not correlate with survival of CTX0E03 cells measured at postmortem. Surviving CTX0E03 cells differentiated into oligodendroglial and endothelial phenotypes. MCAO-induced reduction of neurogenesis in the subventricular zone (SVZ) was partially restored to that observed in sham operated controls. No adverse CTX0E03 cell-related effects were observed during in-life observations or on tissue histology. CONCLUSIONS: . This study found that the implantation of CTX0E03 human neural stem cells in rats after MCAO stroke promoted significant behavioral recovery depending on cell dose. The authors propose a paracrine trophic mechanism, which is triggered early after CTX0E03 cell implantation, and which in turn targets restoration of neurogenesis in the SVZ of MCAO rats.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The neural crest epithelial-mesenchymal transition in 4D: a 'tail' of multiple non-obligatory cellular mechanisms. 19429784

    An epithelial-mesenchymal transition (EMT) is the process whereby epithelial cells become mesenchymal cells, and is typified by the generation of neural crest cells from the neuroepithelium of the dorsal neural tube. To investigate the neural crest EMT, we performed live cell confocal time-lapse imaging to determine the sequence of cellular events and the role of cell division in the EMT. It was observed that in most EMTs, the apical cell tail is retracted cleanly from the lumen of the neuroepithelium, followed by movement of the cell body out of the neural tube. However, exceptions to this sequence include the rupture of the neural crest cell tail during retraction (junctional complexes not completely downregulated), or translocation of the cell body away from the apical surface while morphologically rounded up in M phase (no cell tail retraction event). We also noted that cell tail retraction can occur either before or after the redistribution of apical-basolateral epithelial polarity markers. Surprisingly, we discovered that when an EMT was preceded by a mitotic event, the plane of cytokinesis does not predict neural crest cell fate. Moreover, when daughter cells are separated from the adherens junctions by a parallel mitotic cleavage furrow, most re-establish contact with the apical surface. The diversity of cellular mechanisms by which neural crest cells can separate from the neural tube suggests that the EMT program is a complex network of non-linear mechanisms that can occur in multiple orders and combinations to allow neural crest cells to escape from the neuroepithelium.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • The neural cell adhesion molecule promotes maturation of the presynaptic endocytotic machinery by switching synaptic vesicle recycling from adaptor protein 3 (AP-3)- to A ... 24133283

    Newly formed synapses undergo maturation during ontogenetic development via mechanisms that remain poorly understood. We show that maturation of the presynaptic endocytotic machinery in CNS neurons requires substitution of the adaptor protein 3 (AP-3) with AP-2 at the presynaptic plasma membrane. In mature synapses, AP-2 associates with the intracellular domain of the neural cell adhesion molecule (NCAM). NCAM promotes binding of AP-2 over binding of AP-3 to presynaptic membranes, thus favoring the substitution of AP-3 for AP-2 during formation of mature synapses. The presynaptic endocytotic machinery remains immature in adult NCAM-deficient (NCAM-/-) mice accumulating AP-3 instead of AP-2 and its partner protein AP180 in synaptic membranes and vesicles. NCAM deficiency or disruption of the NCAM/AP-2 complex in wild-type (NCAM+/+) neurons by overexpression of AP-2 binding-defective mutant NCAM interferes with efficient retrieval of the synaptic vesicle v-SNARE synaptobrevin 2. Abnormalities in synaptic vesicle endocytosis and recycling may thus contribute to neurological disorders associated with mutations in NCAM.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Murine neural stem cells model Hunter disease in vitro: glial cell-mediated neurodegeneration as a possible mechanism involved. 24201805

    Mucopolysaccharidosis type II (MPSII or Hunter Syndrome) is a lysosomal storage disorder caused by the deficit of iduronate 2-sulfatase (IDS) activity and characterized by progressive systemic and neurological impairment. As the early mechanisms leading to neuronal degeneration remain elusive, we chose to examine the properties of neural stem cells (NSCs) isolated from an animal model of the disease in order to evaluate whether their neurogenic potential could be used to recapitulate the early phases of neurogenesis in the brain of Hunter disease patients. Experiments here reported show that NSCs derived from the subventricular zone (SVZ) of early symptomatic IDS-knockout (IDS-ko) mouse retained self-renewal capacity in vitro, but differentiated earlier than wild-type (wt) cells, displaying an evident lysosomal aggregation in oligodendroglial and astroglial cells. Consistently, the SVZ of IDS-ko mice appeared similar to the wt SVZ, whereas the cortex and striatum presented a disorganized neuronal pattern together with a significant increase of glial apoptotic cells, suggesting that glial degeneration likely precedes neuronal demise. Interestingly, a very similar pattern was observed in the brain cortex of a Hunter patient. These observations both in vitro, in our model, and in vivo suggest that IDS deficit seems to affect the late phases of neurogenesis and/or the survival of mature cells rather than NSC self-renewal. In particular, platelet-derived growth factor receptor-α-positive (PDGFR-α+) glial progenitors appeared reduced in both the IDS-ko NSCs and in the IDS-ko mouse and human Hunter brains, compared with the respective healthy controls. Treatment of mutant NSCs with IDS or PDGF throughout differentiation was able to increase the number of PDGFR-α+ cells and to reduce that of apoptotic cells to levels comparable to wt. This evidence supports IDS-ko NSCs as a reliable in vitro model of the disease, and suggests the rescue of PDGFR-α+ glial cells as a therapeutic strategy to prevent neuronal degeneration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB345
    Product Catalog Name:
    Anti-O4 Antibody, clone 81
  • Human neural progenitors from different foetal forebrain regions remyelinate the adult mouse spinal cord. 21459827

    Improving oligodendroglial differentiation from human foetal neural progenitor cells remains a primordial issue to accomplish successful cell-based therapies in myelin diseases. Here, we combined in situ, in vitro and in vivo approaches to assess the oligodendrogenic potential of different human foetal forebrain regions during the first trimester of gestation. We show for the first time that the initial wave of oligodendrocyte progenitor emergence in the ventral telencephalon onsets as early as 7.5 weeks into gestation. Interestingly, in vitro, isolation of ganglionic eminences yielded oligodendrocyte progenitor-enriched cultures, as compared with cortex and thalamus. Most importantly, single injection of human neural progenitors into rodent models of focal gliotoxic demyelination revealed the great capacity of these cells to survive, extensively migrate and successfully remyelinate the spinal cord, irrespective of their origin. Thus, our study brings novel insights into the biology of early human foetal neural progenitor cells and offers new support for the development of cellular therapeutics for myelin disorders.
    Document Type:
    Reference
    Product Catalog Number:
    AB9610
    Product Catalog Name:
    Anti-Olig-2 Antibody