Millipore Sigma Vibrant Logo
 

cycle


3062 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (2.647)
  • (35)
  • (3)
  • (2)
  • (2)
  • Mehr anzeigen
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Cell cycle kinetics and immunohistochemical characterization of dissociated fetal neocortical cultures: evidence that differentiated neurons have mitotic capacity. 10915906

    Neurons in the neocortex (regardless of their developmental state) are considered to be post-mitotic and incapable of dividing. We used dissociated primary cultures derived from the neocortices of 16-day-old fetuses to test the counter-hypothesis, that is, differentiating neocortical neurons can divide. The cultured cells experienced considerable cell death, yet the number of viable cells remained relatively constant over the first 5 days in vitro. The implication was that the cultures contained proliferating cells. This was confirmed with a [(3)H]thymidine ([3H]dT) incorporation study and cumulative bromodeoxyuridine labeling. In fact, over 1/4 of the cells were cycling and the length of the cell cycle was 20.0 h; kinetics which mirror those of the developing cortex in vivo. This population of proliferating cells was eliminated by 48 h treatment with fluorodeoxyuridine. Immunohistochemical procedures determined that most cultured cells (>/=90%) expressed proteins associated with differentiating or mature neurons, e.g., neurofilament (NF) 200 and isoforms of microtubule-associated protein (MAP) 2. Markers for immature neurons (e.g., nestin) were expressed by 10% of the cells. In contrast, markers for glia and their precursors were expressed by /=2% of the population. Double-labeling with [3H]dT and a neural-specific antibody showed that cells expressing an antigen for immature neurons constituted most of the proliferating cells, however, a considerable number of [3H]dT-labeled cells expressed markers for differentiating neurons (e.g., NF200 and MAP2). Thus, differentiating neocortical neurons can be mitotically active and it appears that differentiating neurons are derived from both the ventricular and subventricular proliferative zones.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB314
    Produktbezeichnung:
    Anti-Neuron Specific Enolase Antibody, clone F3-1C4
  • Cell cycle regulated expression and phosphorylation of hpttg proto-oncogene product. 10656688

    We recently isolated a cDNA for hpttg, the human homolog of rat pituitary tumor transforming gene. Now we have analysed the expression of hpttg as a function of cell proliferation. hPTTG protein level is up-regulated in rapidly proliferating cells, is down-regulated in response to serum starvation or cell confluence, and is regulated in a cell cycle-dependent manner, peaking in mitosis. In addition, we show that hPTTG is phosphorylated during mitosis. Immunodepletion and in vitro phosphorylation experiments, together with the use of a specific inhibitor, indicate that Cdc2 is the kinase that phosphorylates hPTTG. These results suggest that hpttg is induced by, and may have a role in, regulatory pathways involved in the control of cell proliferation.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    ABS511
  • Cell cycle dependent oscillatory expression of estrogen receptor-α links Pol II elongation to neoplastic transformation. 24979764

    Decades of studies provided a detailed view of the mechanism of estrogen receptor-α (ERα) regulated gene transcription and the physio-pathological relevance of the genetic programs controlled by this receptor in a variety of tissues. However, still limited is our knowledge on the regulation of ERα synthesis. Preliminary observations showed that the expression of ERα is cell cycle regulated. Here, we have demonstrated that a well described polymorphic sequence in the first intron of ERα (PvuII and XbaI) has a key role in regulating the ERα content in cycling cells. We have shown that the RNA Pol II (Pol II) elongation is blocked at the polymorphic site and that the proto-oncogene c-MYB modulates the release of the pausing polymerase. It is well known that the two SNPs are associated to an increased risk, progression, survival and mortality of endocrine-related cancers, here we have demonstrated that the c-MYB-dependent release of Pol II at a specific phase of the cell cycle is facilitated by the px haplotype, thus leading to a higher ERα mitogenic signal. In breast cancer, this mechanism is disrupted when the hormone refractory phenotype is established; therefore, we propose this oscillator as a novel target for the development of therapies aimed at sensitizing breast cancer resistant to hormonal treatments. Because PvuII and XbaI were associated to a broad range physio-pathological conditions beside neoplastic transformation, we expect that the ERα oscillator contributes to the regulation of the estrogen signal in several tissues.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. 22916108

    PRMT6 belongs to the family of Protein Arginine Methyltransferase (PRMT) enzymes that catalyze the methylation of guanidino nitrogens of arginine residues. PRMT6 has been shown to modify the tail of histone H3, but the in vivo function of PRMT6 is largely unknown. Here, we show that PRMT6 regulates cell cycle progression. Knockdown of PRMT6 expression in the human osteosarcoma cell line U2OS results in an accumulation of cells at the G2 checkpoint. Loss of PRMT6 coincides with upregulation of p21 and p27, two members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors. Gene expression and promoter analysis show that p21 and p27 are direct targets of PRMT6, which involves methylation of arginine-2 of histone H3. Our findings imply arginine methylation of histones by PRMT6 in cell cycle regulation.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-585
    Produktbezeichnung:
    Anti-dimethyl-Histone H3 (Arg2) Antibody
  • Cell cycle regulators cyclin D1 and CDK4/6 have estrogen receptor-dependent divergent functions in breast cancer migration and stem cell-like activity. 23839043

    Cyclin D1 and its binding partners CDK4/6 are essential regulators of cell cycle progression and are implicated in cancer progression. Our aim was to investigate a potential regulatory role of these proteins in other essential tumor biological characteristics. Using a panel of breast cancer cell lines and primary human breast cancer samples, we have demonstrated the importance of these cell cycle regulators in both migration and stem-like cell activity. siRNA was used to target cyclin D1 and CDK4/6 expression, having opposing effects on both migration and stem-like cell activity dependent upon estrogen receptor (ER) expression. Inhibition of cyclin D1 or CDK4/6 increases or decreases migration and stem-like cell activity in ER-ve (ER-negative) and ER+ve (ER-positive) breast cancer, respectively. Furthermore, overexpressed cyclin D1 caused decreased migration and stem-like cell activity in ER-ve cells while increasing activity in ER+ve breast cancer cells. Treatment of breast cancer cells with inhibitors of cyclin D1 and CDK4/6 (Flavopiridol/PD0332991), currently in clinical trials, mimicked the effects observed with siRNA treatment. Re-expression of ER in two ER-ve cell lines was sufficient to overcome the effects of either siRNA or clinical inhibitors of cyclin D1 and CDK4/6.   In conclusion, cyclin D1 and CDK4/6 have alternate roles in regulation of migration and stem-like cell activity. Furthermore, these effects are highly dependent upon expression of ER. The significance of these results adds to our general understanding of cancer biology but, most importantly, could be used diagnostically to predict treatment response to cell cycle inhibition in breast cancer.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB8879
    Produktbezeichnung:
    Anti-Cdk4 Antibody, clone DCS-35
  • Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. 29622651

    Quiescent stem cells in adult tissues can be activated for homeostasis or repair. Neural stem cells (NSCs) in Drosophila are reactivated from quiescence in response to nutrition by the insulin signaling pathway. It is widely accepted that quiescent stem cells are arrested in G0 In this study, however, we demonstrate that quiescent NSCs (qNSCs) are arrested in either G2 or G0 G2-G0 heterogeneity directs NSC behavior: G2 qNSCs reactivate before G0 qNSCs. In addition, we show that the evolutionarily conserved pseudokinase Tribbles (Trbl) induces G2 NSCs to enter quiescence by promoting degradation of Cdc25String and that it subsequently maintains quiescence by inhibiting Akt activation. Insulin signaling overrides repression of Akt and silences trbl transcription, allowing NSCs to exit quiescence. Our results have implications for identifying and manipulating quiescent stem cells for regenerative purposes.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-570
    Produktbezeichnung:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Cell cycle arrest and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells. 16298346

    In a search for new anticancer agents, we have identified serratamolide (AT514), a cyclodepsipeptide from Serratia marcescens 2170 that induces cell cycle arrest and apoptosis in various cancer cell lines. A cell viability assay showed that the concentrations that cause 50% inhibition (IC50) in human cancer cell lines range from 5.6 to 11.5 microM depending on the cell line. Flow cytometry analysis revealed that AT514 caused cell cycle arrest in G0/G1 or cell death, depending on the cell type and the length of time for which the cells were exposed to the drug. Subsequent studies revealed that AT514-induced cell death is caused by apoptosis, as indicated by caspases activation (8, 9, 2 and 3) and cleavage of poly (ADP-ribose) polymerase (PARP), release of cytochrome c and apoptosis inducing factor (AIF) from mitochondria, and the appearance of apoptotic bodies and DNA laddering. Alterations in protein levels of Bcl-2 family members might be involved in the mitochondrial disruption observed. AT514 induced p53 accumulation in wild-type p53 cells but cell death was observed in both deficient and wild-type p53 cells. Our results indicate that AT514 induces cell cycle arrest and apoptosis in breast cancer cells irrespectively of p53 status, suggesting that it might represent a potential new chemotherapeutic agent.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    05-572
    Produktbezeichnung:
    Anti-Caspase 9 Antibody, clone 96-2-22
  • Estrous cycle variations in GABA(A) receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area. 22989919

    Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABA(A) receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABA(A) receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABA(A) receptor complex immunoprecipitated by β(2)/β(3) subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-methyltestosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β(3) subunit of the GABA(A) receptor. Although phosphorylation of these β(3) serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through a PKC-dependent mechanism that involves the β(3) subunit and other sites within the GABA(A) receptor complex.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Cell cycle inhibitor p21/ WAF1/ CIP1 as a cofactor of MITF expression in melanoma cells. 20067556

    p21/ WAF1/ Cip1 (p21), a cyclin-dependent kinase inhibitor, may act as an antioncogene, but may also behave as a tumor promoting factor by inhibiting apoptosis. p21 is also a transcriptional regulator, exerting this activity independently of cyclin-dependent kinases. Increased p21 protein levels were found in a subset of melanomas. However, the mechanism(s) contributing to the tolerance of high p21 levels in melanoma cells remains unexplained. Here, we show that the p21 protein positively regulates the promoter of microphthalmia-associated transcription factor (MITF), a transcription factor which plays a central role in the expression of melanocyte-specific genes, lineage determination, and survival of melanoma cells. p21 activated the MITF promoter-reporter, occupied the promoter in vivo and cooperated with cAMP response element binding protein (CREB) in promoter activation. In addition, p21 knockdown by shRNA resulted in a decrease of MITF protein and promoter activity, and p21 protein levels correlated with MITF mRNA in most cell lines tested. As the p21 gene is a known transcriptional target of MITF, the reciprocal stimulation of transcription may constitute a positive-feedback loop reinforcing MITF expression in melanoma cells. Our results might help explain the tolerance of increased p21 levels found in some melanomas.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    17-371
    Produktbezeichnung:
    EZ-ChIP™