Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABAB receptors associated with mood disorders. Cathomas, F; Stegen, M; Sigrist, H; Schmid, L; Seifritz, E; Gassmann, M; Bettler, B; Pryce, CR Translational psychiatry
5
e510
2015
Show Abstract
Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, is fundamental to brain function and implicated in the pathophysiology of several neuropsychiatric disorders. GABA activates G-protein-coupled GABAB receptors comprising principal GABAB1 and GABAB2 subunits as well as auxiliary KCTD8, 12, 12b and 16 subunits. The KCTD12 gene has been associated with bipolar disorder, major depressive disorder and schizophrenia. Here we compare Kctd12 null mutant (Kctd12(-/-)) and heterozygous (Kctd12(+/-)) with wild-type (WT) littermate mice to determine whether lack of or reduced KCTD12 expression leads to phenotypes that, extrapolating to human, could constitute endophenotypes for neuropsychiatric disorders with which KCTD12 is associated. Kctd12(-/-) mice exhibited increased fear learning but not increased memory of a discrete auditory-conditioned stimulus. Kctd12(+/-) mice showed increased activity during the inactive (light) phase of the circadian cycle relative to WT and Kctd12(-/-) mice. Electrophysiological recordings from hippocampal slices, a region of high Kctd12 expression, revealed an increased intrinsic excitability of pyramidal neurons in Kctd12(-/-) and Kctd12(+/-) mice. This is the first direct evidence for involvement of KCTD12 in determining phenotypes of emotionality, behavioral activity and neuronal excitability. This study provides empirical support for the polymorphism and expression evidence that KCTD12 confers risk for and is associated with neuropsychiatric disorders. | | 25689571
 |
GABAB receptor phosphorylation regulates KCTD12-induced K⁺ current desensitization. Adelfinger, L; Turecek, R; Ivankova, K; Jensen, AA; Moss, SJ; Gassmann, M; Bettler, B Biochemical pharmacology
91
369-79
2014
Show Abstract
GABAB receptors assemble from GABAB1 and GABAB2 subunits. GABAB2 additionally associates with auxiliary KCTD subunits (named after their K(+) channel tetramerization-domain). GABAB receptors couple to heterotrimeric G-proteins and activate inwardly-rectifying K(+) channels through the βγ subunits released from the G-protein. Receptor-activated K(+) currents desensitize in the sustained presence of agonist to avoid excessive effects on neuronal activity. Desensitization of K(+) currents integrates distinct mechanistic underpinnings. GABAB receptor activity reduces protein kinase-A activity, which reduces phosphorylation of serine-892 in GABAB2 and promotes receptor degradation. This form of desensitization operates on the time scale of several minutes to hours. A faster form of desensitization is induced by the auxiliary subunit KCTD12, which interferes with channel activation by binding to the G-protein βγ subunits. Here we show that the two mechanisms of desensitization influence each other. Serine-892 phosphorylation in heterologous cells rearranges KCTD12 at the receptor and slows KCTD12-induced desensitization. Likewise, protein kinase-A activation in hippocampal neurons slows fast desensitization of GABAB receptor-activated K(+) currents while protein kinase-A inhibition accelerates fast desensitization. Protein kinase-A fails to regulate fast desensitization in KCTD12 knock-out mice or knock-in mice with a serine-892 to alanine mutation, thus demonstrating that serine-892 phosphorylation regulates KCTD12-induced desensitization in vivo. Fast current desensitization is accelerated in hippocampal neurons carrying the serine-892 to alanine mutation, showing that tonic serine-892 phosphorylation normally limits KCTD12-induced desensitization. Tonic serine-892 phosphorylation is in turn promoted by assembly of receptors with KCTD12. This cross-regulation of serine-892 phosphorylation and KCTD12 activity sharpens the response during repeated receptor activation. | | 25065880
 |
The level and distribution of the GABA(B)R1 and GABA(B)R2 receptor subunits in the rat's inferior colliculus. Jamal, L; Khan, AN; Butt, S; Patel, CR; Zhang, H Frontiers in neural circuits
6
92
2012
Show Abstract
The type B γ-aminobutyric acid receptor (GABA(B) receptor) is an important neurotransmitter receptor in the midbrain auditory structure, the inferior colliculus (IC). A functional GABA(B) receptor is a heterodimer consisting of two subunits, GABA(B)R1 and GABA(B)R2. Western blotting and immunohistochemical experiments were conducted to examine the expression of the two subunits over the IC including its central nucleus, dorsal cortex, and external cortex (ICc, ICd, and ICx). Results revealed that the two subunits existed in both cell bodies and the neuropil throughout the IC. The two subunits had similar regional distributions over the IC. The combined level of cell body and neuropil labeling was higher in the ICd than the other two subdivisions. Labeling in the ICc and ICx was stronger in the dorsal than the ventral regions. In spite of regional differences, no defined boundaries were formed between different areas. For both subunits, the regional distribution of immunoreactivity in the neuropil was parallel to that of combined immunoreactivity in the neuropil and cell bodies. The density of labeled cell bodies tended to be higher but sizes of cell bodies tended to be smaller in the ICd than in the other subdivisions. No systematic regional changes were found in the level of cell body immunoreactivity, except that GABA(B)R2-immunoreactive cell bodies in the ICd had slightly higher optic density (OD) than in other regions. Elongated cell bodies existed throughout the IC. Many labeled cell bodies along the outline of the IC were oriented in parallel to the outline. No strong tendency of orientation was found in labeled cell bodies in ICc. Regional distributions of the subunits in ICc correlated well with inputs to this subdivision. Our finding regarding the contrast in the level of neuropil immunoreactivity among different subdivisions is consistent with the fact that the GABA(B) receptor has different pre- and postsynaptic functions in different IC regions. | | 23189044
 |
Opposite Effects of KCTD Subunit Domains on GABAB Receptor-mediated Desensitization. Riad Seddik,Stefan P Jungblut,Olin K Silander,Mathieu Rajalu,Thorsten Fritzius,Val Besseyrias,Val Jacquier,Bernd Fakler,Martin Gassmann,Bernhard Bettler The Journal of biological chemistry
287
2012
Show Abstract
GABA(B) receptors assemble from principle and auxiliary subunits. The principle subunits GABA(B1) and GABA(B2) form functional heteromeric GABA(B(1,2)) receptors that associate with homotetramers of auxiliary KCTD8, -12, -12b, or -16 (named after their K(+) channel tetramerization domain) subunits. These auxiliary subunits constitute receptor subtypes with distinct functional properties. KCTD12 and -12b generate desensitizing receptor responses while KCTD8 and -16 generate largely non-desensitizing receptor responses. The structural elements of the KCTDs underlying these differences in desensitization are unknown. KCTDs are modular proteins comprising a T1 tetramerization domain, which binds to GABA(B2), and a H1 homology domain. KCTD8 and -16 contain an additional C-terminal H2 homology domain that is not sequence-related to the H1 domains. No functions are known for the H1 and H2 domains. Here we addressed which domains and sequence motifs in KCTD proteins regulate desensitization of the receptor response. We found that the H1 domains in KCTD12 and -12b mediate desensitization through a particular sequence motif, T/NFLEQ, which is not present in the H1 domains of KCTD8 and -16. In addition, the H2 domains in KCTD8 and -16 inhibit desensitization when expressed C-terminal to the H1 domains but not when expressed as a separate protein in trans. Intriguingly, the inhibitory effect of the H2 domain is sequence-independent, suggesting that the H2 domain sterically hinders desensitization by the H1 domain. Evolutionary analysis supports that KCTD12 and -12b evolved desensitizing properties by liberating their H1 domains from antagonistic H2 domains and acquisition of the T/NFLEQ motif. | | 23035119
 |
Presynaptic GABA(B) receptors decrease neurotransmitter release in vestibular nuclei neurons during vestibular compensation. Shao, M; Reddaway, R; Hirsch, JC; Peusner, KD Neuroscience
223
333-54
2012
Show Abstract
Unilateral damage to the peripheral vestibular receptors precipitates a debilitating syndrome of oculomotor and balance deficits at rest, which extensively normalize during the first week after the lesion due to vestibular compensation. In vivo studies suggest that GABA(B) receptor activation facilitates recovery. However, the presynaptic or postsynaptic sites of action of GABA(B) receptors in vestibular nuclei neurons after lesions have not been determined. Accordingly, here presynaptic and postsynaptic GABA(B) receptor activity in principal cells of the tangential nucleus, a major avian vestibular nucleus, was investigated using patch-clamp recordings correlated with immunolabeling and confocal imaging of the GABA(B) receptor subunit-2 (GABA(B)R2) in controls and operated chickens shortly after unilateral vestibular ganglionectomy (UVG). Baclofen, a GABA(B) agonist, generated no postsynaptic currents in principal cells in controls, which correlated with weak GABA(B)R2 immunolabeling on principal cell surfaces. However, baclofen decreased miniature excitatory postsynaptic current (mEPSC) and GABAergic miniature inhibitory postsynaptic current (mIPSC) events in principal cells in controls, compensating and uncompensated chickens three days after UVG, indicating the presence of functional GABA(B) receptors on presynaptic terminals. Baclofen decreased GABAergic mIPSC frequency to the greatest extent in principal cells on the intact side of compensating chickens, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 2-labeled terminals. In uncompensated chickens, baclofen decreased mEPSC frequency to the greatest extent in principal cells on the intact side, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 1-labeled terminals. Altogether, these results revealed changes in presynaptic GABA(B) receptor function and expression which differed in compensating and uncompensated chickens shortly after UVG. This work supports an important role for GABA(B) autoreceptor-mediated inhibition in vestibular nuclei neurons on the intact side during early stages of vestibular compensation, and a role for GABA(B) heteroreceptor-mediated inhibition of glutamatergic terminals on the intact side in the failure to recover function. | | 22871524
 |
?-Aminobutyric acid type B receptor changes in the rat striatum and substantia nigra following intrastriatal quinolinic acid lesions. Letaïef Rekik,Véronique Daguin-Nerrière,Jean-Yves Petit,Philippe Brachet Journal of neuroscience research
89
2011
Show Abstract
Changes in the regional distribution of the metabotropic GABA type B receptors (GABA(B)) were investigated in a rat model of Huntington's disease. Animals received a unilateral intrastriatal injection of quinolinic acid (QA), and GABA(B) immunoreactivity was monitored 3, 11, and 21 days postinjection in the striatum and substantia nigra (SN). Two antibodies, recognizing either the GABA(B1) or the GABA(B2) receptor subtypes, were used. QA injection rapidly induced a protracted increase in GABA(B1) or GABA(B2) immunoreactivity in the lesioned striatum, despite the neuronal loss. In the SN, a continuous increase in GABA(B1) and GABA(B2) immunoreactivity was observed at all time points in the ipsilateral pars reticulata (SNr), whereas the pars compacta (SNc) was unaffected by this phenomenon. This increase was supported by a densitometric analysis. At day 21 postlesion induction, intensely labeled stellate cells and processes were found in the ipsilateral SNr, in addition to immunoreactive neurons. Double labeling of GABA(B1) and glial fibrillary acidic protein (GFAP) showed that the stellate cells were reactive astrocytes. Hence, part of the sustained increase in GABA(B) immunoreactivity that takes place in the SNr and possibly the striatum may be ascribed to reactive astrocytes. It is suggested that GABA(B) receptors are up-regulated in these reactive astrocytes and that agonists might influence the extent of this astroglial reaction. | | 21290407
 |
Functional expression of GABAB receptors in airway epithelium. Kentaro Mizuta, Yoko Osawa, Fumiko Mizuta, Dingbang Xu, Charles W Emala, Kentaro Mizuta, Yoko Osawa, Fumiko Mizuta, Dingbang Xu, Charles W Emala American journal of respiratory cell and molecular biology
39
296-304
2008
Show Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. The GABA(B) receptor is a dimer composed of R1 and R2 components and classically couples to the heterotrimeric G(i) protein. In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in peripheral tissue such as airway smooth muscle. We questioned whether airway epithelium expresses receptors that could respond to GABA. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway epithelium and human airway epithelial cell lines (BEAS-2B and H441). Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in both guinea pig airway epithelium and BEAS-2B cells. The expression of GABA(B)R1 protein was immunohistochemically localized to basal mucin-secreting and ciliated columnar epithelial cells in guinea pig trachea. Baclofen inhibited adenylyl cyclase activity, induced ERK phosphorylation and cross-regulated phospholipase C, leading to increased inositol phosphates in BEAS-2B cells in a pertussis toxin-sensitive manner, implicating G(i) protein coupling. Thus, these receptors couple to G(i) and cross-regulate the phospholipase C/inositol phosphate pathway. The second messengers of these pathways, cyclic AMP and calcium, play pivotal roles in airway epithelial cell primary functions of mucus clearance. Furthermore, the enzyme that synthesizes GABA, glutamic acid decarboxylase (GAD65/67), was also localized to airway epithelium. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to G(i) protein in airway epithelium. Full Text Article | | 18403780
 |
Developing oligodendrocytes express functional GABA(B) receptors that stimulate cell proliferation and migration. Karen Luyt, Timothy P Slade, Jienchi J Dorward, Claire F Durant, Yue Wu, Ryuichi Shigemoto, Stuart J Mundell, Anikó Váradi, Elek Molnár Journal of neurochemistry
100
822-40
2007
Show Abstract
GABA(B) receptors (GABA(B)Rs) are involved in early events during neuronal development. The presence of GABA(B)Rs in developing oligodendrocytes has not been established. Using immunofluorescent co-localization, we have identified GABA(B)R proteins in O4 marker-positive oligodendrocyte precursor cells (OPCs) in 4-day-old mouse brain periventricular white matter. In culture, OPCs, differentiated oligodendrocytes (DOs) and type 2 astrocytes (ASTs) express both the GABA(B1abcdf) and GABA(B2) subunits of the GABA(B)R. Using semiquantitative PCR analysis with GABA(B)R isoform-selective primers we found that the expression level of GABA(B1abd) was substantially higher in OPCs or ASTs than in DOs. In contrast, the GABA(B2) isoform showed a similar level of expression in OPCs and DOs, and a significantly higher level in ASTs. This indicates that the expression of GABA(B1) and GABA(B2) subunits are under independent control during oligodendroglial development. Activation of GABA(B)Rs using the selective agonist baclofen demonstrated that these receptors are functionally active and negatively coupled to adenylyl cyclase. Manipulation of GABA(B)R activity had no effect on OPC migration in a conventional agarose drop assay, whereas baclofen significantly increased OPC migration in a more sensitive transwell microchamber-based assay. Exposure of cultured OPCs to baclofen increased their proliferation, providing evidence for a functional role of GABA(B)Rs in oligodendrocyte development. The presence of GABA(B)Rs in developing oligodendrocytes provides a new mechanism for neuronal-glial interactions during development and may offer a novel target for promoting remyelination following white matter injury. | | 17144904
 |
GABA receptor-mediated effects in the peripheral nervous system: A cross-interaction with neuroactive steroids. Magnaghi, V. et al. J Mol Neurosci. , 28:89-102 (2006)
2006
| | 16632878
 |
Comparative cellular distribution of GABAA and GABAB receptors in the human basal ganglia: immunohistochemical colocalization of the alpha 1 subunit of the GABAA receptor, and the GABABR1 and GABABR2 receptor subunits. Henry J Waldvogel, Andy Billinton, Julia H White, Piers C Emson, Richard L M Faull The Journal of comparative neurology
470
339-56
2004
Show Abstract
The GABA(B) receptor is a G-protein linked metabotropic receptor that is comprised of two major subunits, GABA(B)R1 and GABA(B)R2. In this study, the cellular distribution of the GABA(B)R1 and GABA(B)R2 subunits was investigated in the normal human basal ganglia using single and double immunohistochemical labeling techniques on fixed human brain tissue. The results showed that the GABA(B) receptor subunits GABA(B)R1 and GABA(B)R2 were both found on the same neurons and followed the same distribution patterns. In the striatum, these subunits were found on the five major types of interneurons based on morphology and neurochemical labeling (types 1, 2, 3, 5, 6) and showed weak labeling on the projection neurons (type 4). In the globus pallidus, intense GABA(B)R1 and GABA(B)R2 subunit labeling was found in large pallidal neurons, and in the substantia nigra, both pars compacta and pars reticulata neurons were labeled for both receptor subunits. Studies investigating the colocalization of the GABA(A) alpha(1) subunit and GABA(B) receptor subunits showed that the GABA(A) receptor alpha(1) subunit and the GABA(B)R1 subunit were found together on GABAergic striatal interneurons (type 1 parvalbumin, type 2 calretinin, and type 3 GAD neurons) and on neurons in the globus pallidus and substantia nigra pars reticulata. GABA(B)R1 and GABA(B)R2 were found on substantia nigra pars compacta neurons but the GABA(A) receptor alpha(1) subunit was absent from these neurons. The results of this study provide the morphological basis for GABAergic transmission within the human basal ganglia and provides evidence that GABA acts through both GABA(A) and GABA(B) receptors. That is, GABA acts through GABA(B) receptors, which are located on most of the cell types of the striatum, globus pallidus, and substantia nigra. GABA also acts through GABA(A) receptors containing the alpha(1) subunit on specific striatal GABAergic interneurons and on output neurons of the globus pallidus and substantia nigra pars reticulata. | | 14961561
 |