Millipore Sigma Vibrant Logo
 

II


11640 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (4,570)
  • (2,671)
  • (2,073)
  • (219)
  • (30)
  • Show More

Application Type

  • (1)

Field of Activity

  • (1)

Sample

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • ANG II receptor subtype 1a gene knockdown in the subfornical organ prevents increased drinking behavior in bile duct-ligated rats. 25009217

    Bile duct ligation (BDL) causes congestive liver failure that initiates hemodynamic changes, resulting in dilutional hyponatremia due to increased water intake and vasopressin release. This project tested the hypothesis that angiotensin signaling at the subfornical organ (SFO) augments drinking behavior in BDL rats. A genetically modified adeno-associated virus containing short hairpin RNA (shRNA) for ANG II receptor subtype 1a (AT1aR) gene was microinjected into the SFO of rats to knock down expression. Two weeks later, BDL or sham surgery was performed. Rats were housed in metabolic chambers for measurement of fluid and food intake and urine output. The rats were euthanized 28 days after BDL surgery for analysis. A group of rats was perfused for immunohistochemistry, and a second group was used for laser-capture microdissection for analysis of SFO AT1aR gene expression. BDL rats showed increased water intake that was attenuated in rats that received SFO microinjection of AT1aR shRNA. Among BDL rats treated with scrambled (control) and AT1aR shRNA, we observed an increased number of vasopressin-positive cells in the supraoptic nucleus that colocalized with ΔFosB staining, suggesting increased vasopressin release in both groups. These results indicate that angiotensin signaling through the SFO contributes to increased water intake, but not dilutional hyponatremia, during congestive liver failure.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5296
    Product Catalog Name:
    Anti-Oxytocin Antibody, clone 4G11
  • The type II poly(A)-binding protein PABP-2 genetically interacts with the let-7 miRNA and elicits heterochronic phenotypes in Caenorhabditis elegans. 21415013

    The type II poly(A)-binding protein PABP2/PABPN1 functions in general mRNA metabolism by promoting poly(A) tail formation in mammals and flies. It also participates in poly(A) tail shortening of specific mRNAs in flies, and snoRNA biogenesis in yeast. We have identified Caenorhabditis elegans pabp-2 as a genetic interaction partner of the let-7 miRNA, a widely conserved regulator of animal stem cell fates. Depletion of PABP-2 by RNAi suppresses loss of let-7 activity, and, in let-7 wild-type animals, leads to precocious differentiation of seam cells. This is not due to an effect on let-7 biogenesis and activity, which remain unaltered. Rather, PABP-2 levels are developmentally regulated in a let-7-dependent manner. Moreover, using RNAi PABP-2 can be depleted by greater than 80% without significantly impairing larval viability, mRNA levels or global translation. Thus, it unexpectedly appears that the bulk of PABP-2 is dispensable for general mRNA metabolism in the larva and may instead have more restricted, developmental functions. This observation may be relevant to our understanding of why the phenotypes associated with human PABP2 mutation in oculopharyngeal muscular dystrophy (OPMD) seem to selectively affect only muscle cells.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501
    Product Catalog Name:
    Anti-Actin Antibody, clone C4
  • Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle. 16336212

    We demonstrated previously that membrane depolarization and excitatory receptor agonists such as noradrenaline induce Ca2+-dependent Rho activation in VSM (vascular smooth muscle), resulting in MP (myosin phosphatase) inhibition through the mechanisms involving Rho kinase-mediated phosphorylation of its regulatory subunit MYPT1. In the present study, we show in de-endothelialized VSM strips that the PI3K (phosphoinositide 3-kinase) inhibitors LY294002 and wortmannin inhibited KCl membrane depolarization- and noradrenaline-induced Rho activation and MYPT1 phosphorylation, with concomitant inhibition of MLC (20-kDa myosin light chain) phosphorylation and contraction. LY294002 also augmented de-phosphorylation of MLC and resultantly relaxation in KCl-contracted VSM, whereas LY294002 was much less effective or ineffective under the conditions in which MP was inhibited by either a phosphatase inhibitor or a phorbol ester in Rho-independent manners. VSM express at least four PI3K isoforms, including the class I enzymes p110alpha and p110beta and the class II enzymes PI3K-C2alpha and -C2beta. The dose-response relationships of PI3K-inhibitor-induced inhibition of Rho, MLC phosphorylation and contraction were similar to that of PI3K-C2alpha inhibition, but not to that of the class I PI3K inhibition. Moreover, KCl and noradrenaline induced stimulation of PI3K-C2alpha in a Ca2+-dependent manner, but not of p110alpha or p110beta. Down-regulation of PI3K-C2alpha expression by siRNA (small interfering RNA) inhibited contraction and phosphorylation of MYPT1 and MLC in VSM cells. Finally, intravenous wortmannin infusion induced sustained hypotension in rats, with inhibition of PI3K-C2alpha activity, GTP-loading of Rho and MYPT1 phosphorylation in the artery. These results indicate the novel role of PI3K-C2alpha in Ca2+-dependent Rho-mediated negative control of MP and thus VSM contraction.
    Document Type:
    Reference
    Product Catalog Number:
    07-344
    Product Catalog Name:
    Anti-CPI-17 Antibody
  • Group II metabotropic glutamate receptor activation on peripheral nociceptors modulates TRPV1 function. 19026992

    Transient receptor potential vanilloid 1 (TRPV1) receptors are critical to nociceptive processing. Understanding how these receptors are modulated gives insight to potential therapies for pain. We demonstrate using double labeling immunohistochemistry that Group II metabotropic glutamate receptors (mGluRs) are co-expressed with TRPV1 on rat dorsal root ganglion (DRG) cells. In behavioral studies, intraplantar 0.1 microM APDC, a group II agonist, significantly attenuates capsaicin-induced nociceptive behaviors through a local effect. The APDC-induced inhibition of capsaicin responses is blocked by 1 microM LY341495, a group II antagonist. At the single fiber level, nociceptor responses to capsaicin are significantly decreased following exposure to APDC and this effect is blocked by LY341495. Finally, activation of peripheral group II mGluRs inhibits forskolin-induced thermal hyperalgesia and nociceptor heat sensitization, suggesting group II receptors are negatively coupled to the cAMP/PKA pathway. The data indicate that group II mGluRs and TRPV1 receptors are co-expressed on peripheral nociceptors and activation of mGluRs can inhibit painful sensory transmission following TRPV1 activation. The data are consistent with group II and TRPV1 receptors being linked intracellularly by the cAMP/PKA pathway. Peripheral group II mGluRs are important targets for drug discovery in controlling TRPV1-induced nociception.
    Document Type:
    Reference
    Product Catalog Number:
    AB1553
    Product Catalog Name:
    Anti-Metabotropic Glutamate Receptor 2/3 Antibody
  • Phase II study of Cediranib (AZD 2171), an inhibitor of the vascular endothelial growth factor receptor, for second-line therapy of small cell lung cancer (National Cance ... 20559150

    Inhibition of angiogenesis is a novel strategy for the treatment of cancer. We evaluated the safety and efficacy of cediranib, a potent small molecule inhibitor of the vascular endothelial growth factor receptor, in patients with refractory or recurrent small cell lung cancer (SCLC).Patients with SCLC with progression after prior platinum-based chemotherapy only; performance status (PS) of 0 to 2; and adequate bone marrow, renal, and hepatic function were included. The dose of cediranib was 45 mg PO once a day for the first 12 patients and was reduced to 30 mg PO once a day for the subsequent patients because of intolerance of the higher dose. Treatment was given on a daily continuous schedule. The primary end point was determination of the response rate.Twenty-five patients were enrolled. Patient characteristics were as follows: 13 men; median age 61 years; PS 0 (12 pts), PS 1 (12 pts). A median of two cycles were administered. Salient grade 3/4 toxicities were fatigue, diarrhea, hypertension, proteinuria, and elevated liver enzymes. Tolerability was better with the 30 mg dose once a day. Nine patients had stable disease, but none had a confirmed partial response. The median progression-free survival and overall survival were 2 and 6 months, respectively. Response criteria to proceed to full accrual were not met. Increase in circulating endothelial cell count was noted at the time of progression in several patients.Cediranib failed to demonstrate objective responses in recurrent or refractory SCLC at the dose and schedule evaluated. The 45 mg dose was intolerable in a majority of SCLC patients.
    Document Type:
    Reference
    Product Catalog Number:
    MAB16985F
    Product Catalog Name:
    Anti-MCAM Antibody, clone P1H12, FITC conjugated
  • Arginase II Promotes Macrophage Inflammatory Responses Through Mitochondrial Reactive Oxygen Species, Contributing to Insulin Resistance and Atherogenesis. 23130157

    Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis.In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals.Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).
    Document Type:
    Reference
    Product Catalog Number:
    06-573
    Product Catalog Name:
    Anti-iNOS/NOS II Antibody, NT
  • ANG II promotes IGF-IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation. 24786827

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure. Our previous studies found that the activation of insulin-like growth factor receptor II (IGF-IIR) signaling was critical for hypertensive angiotensin II (ANG II)-induced cardiomyocyte apoptosis. However, the detailed mechanism by which ANG II regulates IGF-IIR in heart cells remains elusive. In this study, we found that ANG II activated its downstream kinase JNK to increase IGF-IIR expression through the ANG II receptor angiotensin type 1 receptor. JNK activation subsequently led to sirtuin 1 (SIRT1) degradation via the proteasome, thus preventing SIRT1 from deacetylating heat-shock transcription factor 1 (HSF1). The resulting increase in the acetylation of HSF1 impaired its ability to bind to the IGF-IIR promoter region (nt -748 to -585). HSF1 protected cardiomyocytes by acting as a repressor of IGF-IIR gene expression, and ANG II diminished this HSF1-mediated repression through enhanced acetylation, thus activating the IGF-IIR apoptosis pathway. Taken together, these results suggest that HSF1 represses IGF-IIR gene expression to protect cardiomyocytes. ANG II activates JNK to degrade SIRT1, resulting in HSF1 acetylation, which induces IGF-IIR expression and eventually results in cardiac hypertrophy and apoptosis. HSF1 could be a valuable target for developing treatments for cardiac diseases in hypertensive patients.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Group II metabotropic glutamate receptors are differentially expressed in the medial nucleus of the trapezoid body in the developing and adult rat. 11377849

    The existence of a neuronal-glial signalling through the activation of neurotransmitter receptors expressed in glia is well-documented. In excitatory synapses, glutamate released from presynaptic terminals activates not only postsynaptic receptors, but also ionotropic and metabotropic glutamate receptors localized in the glia ensheathing the synapses. The medial nucleus of the trapezoid body of the auditory system is involved in the localization of sounds in the space. In this nucleus, the large excitatory synaptic terminals formed by the calyces of Held on the principal globular cell bodies are wrapped by astrocytic processes. Since these synapses are functional from early postnatal days, glia receiving excitatory synaptic signals from the calyces may participate in modulating the maturation and development of the system.Groups I and II of metabotropic glutamate receptors (mGluRs) have been localized in glial cells in different brain regions. To investigate whether group II mGluRs are present in the medial nucleus of the trapezoid body, we have studied the pattern of expression of mGluR2/3 in the developing and mature nucleus by means of immunocytochemichal methods. The most remarkable finding was the switch in the occurrence of mGluR2/3 from glial to neuronal compartments. Thus, a preferential localization of mGluR2/3 immunoreactivity was observed in astrocytic processes surrounding the calyces of Held during the early postnatal development. In contrast, the main feature in adult rats was the presence of the group II mGluRs in presynaptic calyces of Held and postsynaptic principal globular cells.From these observations we suggest a role for group II mGluRs in neuronal-glial signalling in the calyx of Held-principal globular neuron synapses. Activation of these receptors might be relevant to the maturation and modulation of synaptic transmission in the medial nucleus of the trapezoid body.
    Document Type:
    Reference
    Product Catalog Number:
    AB1553
    Product Catalog Name:
    Anti-Metabotropic Glutamate Receptor 2/3 Antibody