Millipore Sigma Vibrant Logo
 

Factor


10432 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (7,877)
  • (2,042)
  • (52)
  • (8)
  • (7)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Knockdown of IKK1/2 promotes differentiation of mouse embryonic stem cells into neuroectoderm at the expense of mesoderm. 22833419

    Activation of nuclear factor kappa B (NF-κB) is accomplished by a specific kinase complex (IKK-complex), phosphorylating inhibitors of NF-κB (IκB). In embryonic stem cells (ESCs), NF-κB signaling causes loss of pluripotency and promotes differentiation towards a mesodermal phenotype. Here we show that NF-κB signaling is involved in cell fate determination during retinoic acid (RA) mediated differentiation of ESCs. Knockdown of IKK1 and IKK2 promotes differentiation of ESCs into neuroectoderm at the expense of neural crest derived myofibroblasts. Our data indicate that RA is not only able to induce neuronal differentiation in vitro but also drives ESCs into a neural crest cell lineage represented by differentiation towards peripheral neurons and myofibroblasts. The NC is a transiently existing, highly multipotent embryonic cell population generating a wide range of different cell types. During embryonic development the NC gives rise to distinct precursor lineages along the anterior-posterior axis determining differentiation towards specific derivates. Retinoic acid (RA) signaling provides essential instructive cues for patterning the neuroectoderm along the anterior-posterior axis. The demonstration of RA as a sufficient instructive signal for the differentiation of pluripotent cells towards NC and the involvement of NF-κB during this process provides useful information for the generation of specific NC-lineages, which are valuable for studying NC development or disease modeling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Mapping molecular differences and extracellular matrix gene expression in segmental outflow pathways of the human ocular trabecular meshwork. 25826404

    Elevated intraocular pressure (IOP) is the primary risk factor for glaucoma, and lowering IOP remains the only effective treatment for glaucoma. The trabecular meshwork (TM) in the anterior chamber of the eye regulates IOP by generating resistance to aqueous humor outflow. Aqueous humor outflow is segmental, but molecular differences between high and low outflow regions of the TM are poorly understood. In this study, flow regions of the TM were characterized using fluorescent tracers and PCR arrays. Anterior segments from human donor eyes were perfused at physiological pressure in an ex vivo organ culture system. Fluorescently-labeled microspheres of various sizes were perfused into anterior segments to label flow regions. Actively perfused microspheres were segmentally distributed, whereas microspheres soaked passively into anterior segments uniformly labeled the TM and surrounding tissues with no apparent segmentation. Cell-tracker quantum dots (20 nm) were localized to the outer uveal and corneoscleral TM, whereas larger, modified microspheres (200 nm) localized throughout the TM layers and Schlemm's canal. Distribution of fluorescent tracers demonstrated a variable labeling pattern on both a macro- and micro-scale. Quantitative PCR arrays allowed identification of a variety of extracellular matrix genes differentially expressed in high and low flow regions of the TM. Several collagen genes (COL16A1, COL4A2, COL6A1 and 2) and MMPs (1, 2, 3) were enriched in high, whereas COL15A1, and MMP16 were enriched in low flow regions. Matrix metalloproteinase activity was similar in high and low regions using a quantitative FRET peptide assay, whereas protein levels in tissues showed modest regional differences. These gene and protein differences across regions of the TM provide further evidence for a molecular basis of segmental flow routes within the aqueous outflow pathway. New insight into the molecular mechanisms of segmental aqueous outflow may aid in the design and delivery of improved treatments for glaucoma patients.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1919
    Nombre del producto:
    Anti-Fibrillin Antibody, clone 11C1.3
  • Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. 16242075

    Elevated epidermal growth factor receptor (EGFR) and mammalian target of rapamycin (mTOR) signaling are known to contribute to the malignant properties of glioblastoma multiforme (GBM), which include uncontrolled cell proliferation and evasion of apoptosis. Small molecule inhibitors that target these protein kinases have been evaluated in multiple clinical trials for cancer patients, including those with GBM. Here we have examined the cellular and molecular effects of a combined kinase inhibition of mTOR (rapamycin) and EGFR (EKI-785) in U87 and U251 GBM cells. Simultaneous treatment with rapamycin and EKI-785 results in synergistic antiproliferative as well as proapoptotic effects. At a molecular level, rapamycin alone significantly decreases S6 phosphorylation, whereas EKI-785 alone promotes substantially reduced signal transducer and activator of transcription (STAT3) phosphorylation. Treatment with rapamycin alone also increases Akt phosphorylation on Ser-473, but this effect is blocked by a simultaneous administration of EKI-785. Individually, EKI-785 diminishes while rapamycin promotes the binding of the translation inhibitor eukaryotic initiation factor 4E binding protein (4EBP1) to the eukaryotic translation initiation factor 4E (eIF4E). In spite of these opposing effects, the highest level of 4EBP1-eIF4E binding occurs with the combination of the two inhibitors. These results indicate that the inhibition of EGFR and mTOR has distinct as well as common signaling consequences and provides a molecular rationale for the synergistic antitumor effects of EKI-785 and rapamycin administration.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-483
  • FOXD3 is a novel tumor suppressor that affects growth, invasion, metastasis and angiogenesis of neuroblastoma. 24269992

    The transcription factor forkhead box D3 (FOXD3) plays a crucial role in the development of neural crest cells. However, the function and underlying mechanisms of FOXD3 in the progression of neuroblastoma (NB), an embryonal tumor that is derived from the neural crest, still remain largely unknown. Here, we report that FOXD3 is an important oncosuppressor of NB tumorigenicity and aggressiveness. We found that FOXD3 was down-regulated in NB tissues and cell lines. Patients with high FOXD3 expression have greater survival probability. Over-expression or knockdown of FOXD3 responsively altered both the protein and mRNA levels of N-myc downstream regulated 1 (NDRG1) and its downstream genes, vascular endothelial growth factor and matrix metalloproteinase 9, in cultured NB cell lines SH-SY5Y and SK-N-SH. Luciferase reporter and chromatin immunoprecipitation assays indicated that FOXD3 directly targeted the binding site within NDRG1 promoter to facilitate its transcription. Ectopic expression of FOXD3 suppressed the growth, invasion, metastasis and angiogenesis of SH-SY5Y and SK-N-SH cells in vitro and in vivo. Conversely, knockdown of FOXD3 promoted the growth, migration, invasion and angiogenesis of NB cells. In addition, rescue experiments in FOXD3 over-expressed or silenced NB cells showed that restoration of NDRG1 expression prevented the tumor cells from FOXD3-mediated changes in these biological features. Our results indicate that FOXD3 exhibits tumor suppressive activity that affects the growth, aggressiveness and angiogenesis of NB through transcriptional regulation of NDRG1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Argonaute2 regulation for K+ channel-mediated human adipose tissue-derived stromal cells self-renewal and survival in nucleus. 22014067

    Argonaute2 (Ago2) is a well-known factor that has intrinsic endonuclease activity and is a part of the fundamental gene regulatory machinery. Recently, we showed that nuclear Ago2 regulates voltage-gated potassium (Kv) channels and that Ago2/Kv1.3 has crucial functions in the self-renewal and cell de-aging processes in adipose tissue-derived stromal cells (ATSCs). In the nucleus, Ago2 bound to the promoter regions of calcium-activated potassium channel 3, potassium channel subfamily K member 1 (KCNK1), and voltage-gated potassium channel 2, and the expression of these genes was significantly upregulated at the level of transcription. We detected an active K+ channel that plays a critical role in Ago2-mediated ATSC self-renewal through the control of membrane potential during cell self-renewal and differentiation. Among the several regulatory subunits of voltage-dependent K+ (Kv) channels, Kv1.3 and Kv1.5 have been shown to impact tissue differentiation and cell growth in cultured ATSCs following their direct binding to the regulatory region of the Kv channel gene. In ATSCs, interference with Ago2 or K+ channel gene expression or treatment with tetraethylammonium significantly downregulated stemness gene expression, induced cell cycle arrest, and inhibited the ability of cells to transdifferentiate into neurons or β-cells via Oct4 knockdown. Blockage of the K+ channel significantly induced protein kinase C (PKC) α, β, and δ phosphorylation and negatively affected Ago2 and Oct4 expression. This K+ channel blockage also resulted in the upregulation of p53 and p21 expression and the inactivation of mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase 1/2 (ERK 1/2), AKT, β-catenin, and STAT3. Our results suggest that the nuclear Ago2 regulation of the K+ channel or stemness-related gene expression plays a critical role in adult stem cell self-renewal and differentiation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • HNF-3/forkhead homologue-4 (HFH-4) is expressed in ciliated epithelial cells in the developing mouse lung. 10330459

    HNF-3/forkhead homologue-4 (HFH-4), a transcription factor of the winged-helix/forkhead family, was detected by immunohistochemistry in tissue of the developing mouse. HFH-4 protein was present in epithelial cells of the lung, trachea, oviduct, and embryonic esophagus, and in ependymal cells lining the spinal column and ventricles of the brain. In lung, trachea, and nose, HFH-4 was expressed in a distinct subset of epithelial cells that also expressed beta-tubulin IV, a ciliated cell marker. Cellular sites of HFH-4 and beta-tubulin IV expression were distinct from that of Clara cell secretory protein (CCSP), which was detected in nonciliated epithelial cells in the conducting airway of the lung. HFH-4 and beta-tubulin IV, but not CCSP, were detected in the respiratory epithelium of thyroid transcription factor-1 (TTF-1) gene-targeted mice. The presence of HFH-4 and beta-tubulin IV in TTF-1 gene-targeted mice demonstrates that differentiation of ciliated epithelium does not require TTF-1. Co-localization of HFH-4 and beta-tubulin IV staining in various tissues during mouse development supports a role for HFH-4 in the differentiation of ciliated cell lineages.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-837
    Nombre del producto:
    Anti-HFH-4/FOXJ1 Antibody, clone 3-19
  • SUMOylated MAFB promotes colorectal cancer tumorigenesis. 27829226

    The transcription factor, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB), promotes tumorigenesis in some cancers. In this study, we found that MAFB levels were increased in clinical colorectal cancer (CRC) samples, and higher expression correlated with more advanced TNM stage. We identified MAFB amplifications in a majority of tumor types in an assessment of The Cancer Genome Atlas database. Altered MAFB levels due to gene amplification, deletion, mutation, or transcription upregulation occurred in 9% of CRC cases within the database. shRNA knockdown experiments demonstrated that MAFB deficiency blocked CRC cell proliferation by arresting the cell cycle at G0/G1 phase in vitro. We found that MAFB could be SUMOylated by SUMO1 at lysine 32, and this modification was critical for cell cycle regulation by MAFB in CRC cells. SUMOylated MAFB directly regulated cyclin-dependent kinase 6 transcription by binding to its promoter. MAFB knockdown CRC cell xenograft tumors in mice grew more slowly than controls, and wild-type MAFB-overexpressing tumors grew more quickly than tumors overexpressing MAFB mutated at lysine 32. These data suggest that SUMOylated MAFB promotes CRC tumorigenesis through cell cycle regulation. MAFB and its SUMOylation process may serve as novel therapeutic targets for CRC treatment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Production and characterization of monoclonal antibodies against the leukemia inhibitory factor low affinity receptor, gp190. 9294600

    Leukemia inhibitory factor (LIF), oncostatin-M (OSM), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT1) act through transmembrane receptors which share the gp190 glycoprotein chain. The understanding of its involvement in the biology of these cytokines is of importance since these systems have recently been shown to participate in major inflammatory and neoplastic processes such as myelomatosis (Rose-John, S., Heinrich, P.C., 1994. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281). In addition, this family of receptors also shares the gp130 transducing chain, with the IL6 and IL11 receptors. Because IL6 and gp130 were the first members to be discovered, most of the available reagents are directed at them. In this respect, monoclonal antibodies have played a major role in elucidating these receptor/ligand interactions and exploring the pathophysiological aspects of their biology. So far, no such reagents have been described for the gp190. We now report the production and characterization of 16 monoclonal antibodies directed against human gp190. They were obtained using recombinant chimeric or truncated proteins produced in a eukaryotic CHO cell line. One was able to block the biological activity of LIF. Because gp190 comprises two hematopoietin binding domains, crude epitope mapping was possible using the same reagents. While more of these antibodies are required, the present set validate the technological approach used for their preparation and should improve our understanding of this class of cytokines.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABD150
    Nombre del producto:
    Anti-LIF Receptor, clone 1C7 (Azide Free) Antibody
  • Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. 19927124

    Osterix (Osx) is an osteoblast-specific transcription factor required for osteoblast differentiation and bone formation. Osx null mice develop a normal cartilage skeleton but fail to form bone and to express osteoblast-specific marker genes. To better understand the control of transcriptional regulation by Osx, we identified Osx-interacting proteins using proteomics approaches. Here, we report that a Jumonji C (JmjC)-domain containing protein, called NO66, directly interacts with Osx and inhibits Osx-mediated promoter activation. The knockdown of NO66 in preosteoblast cells triggered accelerated osteoblast differentiation and mineralization, and markedly stimulated the expression of Osx target genes. A JmjC-dependent histone demethylase activity was exhibited by NO66, which was specific for both H3K4me and H3K36me in vitro and in vivo, and this activity was needed for the regulation of osteoblast-specific promoters. During BMP-2-induced differentiation of preosteoblasts, decreased NO66 occupancy correlates with increased Osx occupancy at Osx-target promoters. Our results indicate that interactions between NO66 and Osx regulate Osx-target genes in osteoblasts by modulating histone methylation states.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Yin-yang 1 and glucocorticoid receptor participate in the Stat5-mediated growth hormone response of the serine protease inhibitor 2.1 gene. 10713133

    A growth hormone-inducible nuclear factor complex (GHINF), affinity-purified using the growth hormone response element (GHRE) from the promoter of rat serine protease inhibitor 2.1, was found to contain Stat5a and -5b, as well as additional components. The ubiquitous transcription factor yin-yang 1 (YY1) is present in GHINF. An antibody to YY1 inhibited the formation of the GHINF.GHRE complex in an electrophoretic mobility shift assay. Furthermore, Stat5 was co-immunoprecipitated from rat hepatic nuclear extracts with antibodies to YY1. An examination of the GHRE shows that, in addition to two gamma-activated sites, it contains a putative YY1 binding site between the two gamma-activated sites, overlapping them both. Mutation of this putative YY1 site results in a decrease of GHINF.GHRE complex formation in an electrophoretic mobility shift assay and a corresponding decrease in growth hormone (GH) response in functional assays. The glucocorticoid receptor was also present in GHINF, and Stat5 co-immunoprecipitates with glucocorticoid receptor in hepatic nuclear extracts from rats treated with GH. GH activation of serine protease inhibitor 2.1 requires the unique sequence of the GHRE encompassing the recognition sites of several transcription factors, and the interaction of these factors enhances the assembly of the transcription complex.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-867
    Nombre del producto:
    Anti-phospho-STAT5A/B (Ser726/Ser731) Antibody