Millipore Sigma Vibrant Logo
 

rna binding protein


141 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (100)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (97)
  • (1)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • SATB2 interacts with chromatin-remodeling molecules in differentiating cortical neurons. 18333962

    During our search for developmental regulators of neuronal differentiation, we identified special AT-rich sequence-binding protein (SATB)2 that is specifically expressed in the developing rat neocortex and binds to AT-rich DNA elements. Here we investigated whether the regulatory function of SATB2 involves chromatin remodeling at the AT-rich DNA site. In-vitro and in-vivo assays using a DNA affinity pre-incubation specificity test of recognition and chromatin immunoprecipitation showed that SATB2 specifically binds to histone deacetylase 1 and metastasis-associated protein 2, members of the nucleosome-remodeling and histone deacetylase complex. Double immunohistochemistry showed that, in the developing rat neocortex, SATB2 is coexpressed with both proteins. Using a cell culture model, we showed that trichostatin A treatment, which blocks the activities of histone deacetylases, reverses the AT-rich dsDNA-dependent repressor effect of SATB2. These findings suggested that the molecular regulatory function of SATB2 involves modification of the chromatin structure. Semi-quantitative chromatin immunoprecipitation analysis of cortices from SATB2 mutant and wild-type animals indicated that, in the knock-out brains, SATB2 is replaced in the chromatin-remodeling complex by AU-rich element RNA binding protein 1, another AT-rich DNA binding protein also expressed in differentiating cortical neurons. These results suggested that an altered chromatin structure, due to the presence of different AT-rich DNA binding proteins in the chromatin-remodeling complex, may contribute to the developmental abnormalities observed in the SATB2 mutant animals. These findings also raised the interesting possibility that SATB2, along with other AT-rich DNA binding proteins, is involved in mediating epigenetic influences during cortical development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Structure, tissue distribution and genomic organization of the murine RRM-type RNA binding proteins TIA-1 and TIAR. 8871565

    TIA-1 and TIAR are RNA binding proteins of the RNA recognition motif (RRM)/ribonucleoprotein (RNP) family that have been implicated as effectors of apoptotic cell death. We report the structures of murine TIA-1 and TIAR (mTIA-1 and mTIAR) deduced from cDNA cloning, the mRNA and protein tissue distribution of mTIA-1 and mTIAR, and the exon-intron structures of the mTIA-1 and mTIAR genes. Both mTIA-1 and mTIAR are comprised of three approximately 100 amino acid N-terminal RRM domains and a approximately 90 amino acid C-terminal auxiliary domain. This subfamily of RRM proteins is evolutionarily well conserved; mTIA-1 and mTIAR are 80% similar to each other, and 96 and 99% similar to hTIA-1 and hTIAR, respectively. The overall exon-intron structures of the mTIA-1 and mTIAR genes are also similar to each other, as well as to the human TIA-1 gene structure. While Northern blot analysis reveals that mTIA-1 and mTIAR mRNAs have a broad tissue distribution, mTIA-1 and mTIAR proteins are predominantly expressed in brain, testis and spleen. At least two isoforms of both mTIA-1 and mTIAR are generated by alternative splicing. Murine TIA-1 isoforms including or lacking the exon 5 encoded sequences are expressed at a ratio of approximately 1:1, whereas mTIAR isoforms including or lacking the 5'-end of exon 3 sequences are expressed in a approximately 1:6 ratio. Molecular characterization of murine TIA-1 and TIAR RNA binding proteins provides the basis for a genetic analysis of the functional roles of these proteins during mammalian development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. 20948999

    Tar DNA Binding Protein-43 (TDP-43) is a principle component of inclusions in many cases of frontotemporal lobar degeneration (FTLD-U) and amyotrophic lateral sclerosis (ALS). TDP-43 resides predominantly in the nucleus, but in affected areas of ALS and FTLD-U central nervous system, TDP-43 is aberrantly processed and forms cytoplasmic inclusions. The mechanisms governing TDP-43 inclusion formation are poorly understood. Increasing evidence indicates that TDP-43 regulates mRNA metabolism by interacting with mRNA binding proteins that are known to associate with RNA granules. Here we show that TDP-43 can be induced to form inclusions in cell culture and that most TDP-43 inclusions co-localize with SGs. SGs are cytoplasmic RNA granules that consist of mixed protein-RNA complexes. Under stressful conditions SGs are generated by the reversible aggregation of prion-like proteins, such as TIA-1, to regulate mRNA metabolism and protein translation. We also show that disease-linked mutations in TDP-43 increased TDP-43 inclusion formation in response to stressful stimuli. Biochemical studies demonstrated that the increased TDP-43 inclusion formation is associated with accumulation of TDP-43 detergent insoluble complexes. TDP-43 associates with SG by interacting with SG proteins, such as TIA-1, via direct protein-protein interactions, as well as RNA-dependent interactions. The signaling pathway that regulates SGs formation also modulates TDP-43 inclusion formation. We observed that inclusion formation mediated by WT or mutant TDP-43 can be suppressed by treatment with translational inhibitors that suppress or reverse SG formation. Finally, using Sudan black to quench endogenous autofluorescence, we also demonstrate that TDP-43 positive-inclusions in pathological CNS tissue co-localize with multiple protein markers of stress granules, including TIA-1 and eIF3. These data provide support for accumulating evidence that TDP-43 participates in the SG pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • Activation of developmental nuclear fibroblast growth factor receptor 1 signaling and neurogenesis in adult brain by α7 nicotinic receptor agonist. 24014683

    Reactivation of endogenous neurogenesis in the adult brain or spinal cord holds the key for treatment of central nervous system injuries and neurodegenerative disorders, which are major health care issues for the world's aging population. We have previously shown that activation of developmental integrative nuclear fibroblast growth factor receptor 1 (FGFR1) signaling (INFS), via gene transfection, reactivates neurogenesis in the adult brain by promoting neuronal differentiation of brain neural stem/progenitor cells (NS/PCs). In the present study, we report that targeting the α7 nicotinic acetylcholine receptors (α7nAChRs) with a specific TC-7020 agonist led to a robust accumulation of endogenous FGFR1 in the cell nucleus. Nuclear FGFR1 accumulation was accompanied by an inhibition of proliferation of NS/PCs in the subventricular zone (SVZ) and by the generation of new neurons. Neuronal differentiation was observed in different regions of the adult mouse brain, including (a) βIII-Tubulin-expressing cortical neurons, (b) calretinin-expressing hippocampal neurons, and (c) cells in substantia nigra expressing the predopaminergic Nurr1+ phenotype. Furthermore, we showed that in vitro stimulation of neural stem/progenitor cells with α7nAChR agonist directly activated INFS and neuronal-like differentiation. TC-7020 stimulation of the βIII-Tubulin gene was accompanied by increased binding of FGFR1, CREB binding protein, and RNA polymerase II to a Nur77 targeted promoter region. TC-7020 augmented Nur77-dependent activation of nerve growth factor inducible-B protein responsive element, indicating that α7nAChR upregulation of βIII-Tubulin involves neurogenic FGFR1-Nur signaling. The reactivation of INFS and neurogenesis in adult brain by the α7nAChR agonist may offer a new strategy to treat brain injuries, neurodegenerative diseases, and neurodevelopmental diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. 22649192

    NK cells are important innate immune cells with potent cytotoxicity that can be activated by type I IFN from the host once infected. How NK cell cytotoxicity is activated by type I IFN and then tightly regulated remain to be fully elucidated. MicroRNAs (miRNAs, or miRs) are important regulators of innate immune response, but the full scale of miRNome in human NK cells remains to be determined. In this study, we reported an in-depth analysis of miRNomes in resting and IFN-α-activated human NK cells, found two abundant miRNAs, miR-378 and miR-30e, markedly decreased in activated NK cells by IFN-α, and further proved that miR-378 and miR-30e directly targeted granzyme B and perforin, respectively. Thus, IFN-α activation suppresses miR-378 and miR-30e expression to release cytolytic molecule mRNAs for their protein translation and then augments NK cell cytotoxicity. Importantly, the phenomena are also confirmed in human NK cells activated by other cytokines and even in the sorted CD16(+)CD56(dim)CD69(+) human NK cell subset. Finally, miR-378 and miR-30e were proved to be suppressors of human NK cell cytotoxicity. Taken together, our results reveal that downregulated miR-378 and miR-30e during NK cell activation are negative regulators of human NK cell cytotoxicity, providing a mechanistic explanation for regulation of NK cell function by miRNAs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-701
    Nombre del producto:
    EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. 20215348

    The RNA-binding protein Bicaudal C is an important regulator of embryonic development in C. elegans, Drosophila and Xenopus. In mouse, bicaudal C (Bicc1) mutants are characterized by the formation of fluid-filled cysts in the kidney and by expansion of epithelial ducts in liver and pancreas. This phenotype is reminiscent of human forms of polycystic kidney disease (PKD). Here, we now provide data that Bicc1 functions by modulating the expression of polycystin 2 (Pkd2), a member of the transient receptor potential (TRP) superfamily. Molecular analyses demonstrate that Bicc1 acts as a post-transcriptional regulator upstream of Pkd2. It regulates the stability of Pkd2 mRNA and its translation efficiency. Bicc1 antagonized the repressive activity of the miR-17 microRNA family on the 3\'UTR of Pkd2 mRNA. This was substantiated in Xenopus, in which the pronephric defects of bicc1 knockdowns were rescued by reducing miR-17 activity. At the cellular level, Bicc1 protein is localized to cytoplasmic foci that are positive for the P-body markers GW182 and HEDLs. Based on these data, we propose that the kidney phenotype in Bicc1(-/-) mutant mice is caused by dysregulation of a microRNA-based translational control mechanism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB9088
    Nombre del producto:
    Anti-Polycystin-2 Antibody
  • LIN28 expression in rat spinal cord after injury. 24700281

    LIN28, an RNA-binding protein, is known to be involved in the regulation of many cellular processes, such as embryonic stem cell proliferation, cell fate succession, developmental timing, and oncogenesis. However, its expression and function in central nervous system still unclear. In this study, we performed an acute spinal cord contusion injury (SCI) model in adult rats and investigated the dynamic changes of LIN28 expression in spinal cord. Western blot and immunohistochemistry analysis revealed that LIN28 was present in normal spinal cord. It gradually increased, reached a peak at 3 day, and then nearly declined to the basal level at 14 days after SCI. Double immunofluorescence staining showed that LIN28 immunoreactivity was found in neurons, astrocytes and a handful of microglia. Interestingly, LIN28 expression was increased predominantly in astrocytes but not in neurons. Moreover, the colocalization of LIN28 and proliferating cell nuclear antigen was detected after injury. Western blot showed that LIN28 participated in lipopolysaccharide (LPS) induced astrocytes inflammatory responses by NF-κB signaling pathway. These results suggested that LIN28 may be involved in the pathologic process of SCI, and further research is needed to have a good understanding of its function and mechanism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • RNA-binding protein TIAR is essential for primordial germ cell development. 9482885

    Primordial germ cells (PGCs) give rise to both eggs and sperm via complex maturational processes that require both cell migration and proliferation. However, little is known about the genes controlling gamete formation during the early stages of PGC development. Although several mutations are known to severely reduce the number of PGCs reaching and populating the genital ridges, the molecular identity of only two of these genes is known: the c-kit receptor protein tyrosine kinase and the c-kit ligand (the steel factor). Herein, we report that mutant mice lacking TIAR, an RNA recognition motif/ribonucleoprotein-type RNA-binding protein highly expressed in PGCs, fail to develop spermatogonia or oogonia. This developmental defect is a consequence of reduced survival of PGCs that migrate to the genital ridge around embryonic day 11.5 (E11.5). The numbers of PGCs populating the genital ridge in TIAR-deficient embryos are severely reduced compared to wild-type embryos by E11.5 and in the mutants PGCs are completely absent at E13.5. Furthermore, TIAR-deficient embryonic stem cells do not proliferate in the absence of exogenous leukemia inhibitory factor in an in vitro methylcellulose culture assay, supporting a role for TIAR in regulating cell proliferation. Because the development of PGCs relies on the action of several growth factors, these results are consistent with a role for TIAR in the expression of a survival factor or survival factor receptor that is essential for PGC development. TIAR-deficient mice thus provide a model system to study molecular mechanisms of PGC development and possibly the basis for some forms of idiopathic infertility.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • A novel role of CPEB3 in regulating EGFR gene transcription via association with Stat5b in neurons. 20639532

    CPEB3 is a sequence-specific RNA-binding protein and represses translation of its target mRNAs in neurons. Here, we have identified a novel function of CPEB3 as to interact with Stat5b and inhibit its transcription activity in the nucleus without disrupting dimerization, DNA binding and nuclear localization of Stat5b. Moreover, CPEB3 is a nucleocytoplasm-shuttling protein with predominant residence in the cytoplasm; whereas activation of NMDA receptors accumulates CPEB3 in the nucleus. Using the knockdown approach, we have found the receptor tyrosine kinase, EGFR, is a target gene transcriptionally activated by Stat5b and downregulated by CPEB3 in neurons. The increased EGFR expression in CPEB3 knockdown neurons, when stimulated with EGF, alters the kinetics of downstream signaling. Taken together, CPEB3 has a novel function in the nucleus as to suppress Stat5b-dependent EGFR gene transcription. Consequently, EGFR signaling is negatively regulated by CPEB3 in neurons.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB378
    Nombre del producto:
    Anti-MAP2A Antibody, AP20