Millipore Sigma Vibrant Logo
 

histone


10088 Results Búsqueda avanzada  
Mostrar
Documentos (10,000)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (6,109)
  • (3,874)
  • (6)
  • (6)
  • (3)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Sirt6 cooperates with Blimp1 to positively regulate osteoclast differentiation. 27189179

    Global deletion of the gene encoding a nuclear histone deacetylase sirtuin 6 (Sirt6) in mice leads to osteopenia with a low bone turnover due to impaired bone formation. But whether Sirt6 regulates osteoclast differentiation is less clear. Here we show that Sirt6 functions as a transcriptional regulator to directly repress anti-osteoclastogenic gene expression. Targeted ablation of Sirt6 in hematopoietic cells including osteoclast precursors resulted in increased bone volume caused by a decreased number of osteoclasts. Overexpression of Sirt6 led to an increase in osteoclast formation, and Sirt6-deficient osteoclast precursor cells did not undergo osteoclast differentiation efficiently. Moreover, we showed that Sirt6, induced by RANKL-dependent NFATc1 expression, forms a complex with B lymphocyte-induced maturation protein-1 (Blimp1) to negatively regulate expression of anti-osteoclastogenic gene such as Mafb. These findings identify Sirt6 as a novel regulator of osteoclastogenesis by acting as a transcriptional repressor.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana ... 23209430

    Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-449
    Nombre del producto:
    Anti-trimethyl-Histone H3 (Lys27) Antibody
  • Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. 23570311

    The histone variant H3.3 plays key roles in regulating chromatin states and transcription. However, the role of endogenous H3.3 in mammalian cells and during development has been less thoroughly investigated. To address this gap, we report the production and phenotypic analysis of mice and cells with targeted disruption of the H3.3-encoding gene, H3f3b.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Histone H2A variants H2AX and H2AZ. 11893489

    Two of the nucleosomal histone families, H3 and H2A, have highly conserved variants with specialized functions. Recent studies have begun to elucidate the roles of two of the H2A variants, H2AX and H2AZ. H2AX is phosphorylated on a serine four residues from the carboxyl terminus in response to the introduction of DNA double-strand breaks, whether these breaks are a result of environmental insult, metabolic mistake, or programmed process. H2AZ appears to alter nucleosome stability, is partially redundant with nucleosome remodeling complexes, and is involved in transcriptional control.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Histone H3.3K27M Mobilizes Multiple Cancer/Testis (CT) Antigens in Pediatric Glioma. 29453317

    Lysine to methionine mutations at position 27 (K27M) in the histone H3 (H3.3 and H3.1) are highly prevalent in pediatric high-grade gliomas (HGG) that arise in the midline of the central nervous system. H3K27M perturbs the activity of polycomb repressor complex 2 and correlates with DNA hypomethylation; however, the pathways whereby H3K27M drives the development of pediatric HGG remain poorly understood. To understand the mechanism of pediatric HGG development driven by H3.3K27M and discover potential therapeutic targets or biomarkers, we established pediatric glioma cell model systems harboring H3.3K27M and performed microarray analysis. H3.3K27M caused the upregulation of multiple cancer/testis (CT) antigens, such as ADAMTS1, ADAM23, SPANXA1, SPANXB1/2, IL13RA2, VCY, and VCX3A, in pediatric glioma cells. Chromatin immunoprecipitation analysis from H3.3K27M cells revealed decreased H3K27me3 levels and increased H3K4me3 levels on the VCX3A promoter. Knockdown of VCX3A by siRNA significantly inhibited the growth of pediatric glioma cells harboring H3.3K27M. Overexpression of VCX3A/B genes stimulated the expression of several HLA genes, including HLA-A, HLA-B, HLA-E, HLA-F, and HLA-G The expression of VCX3A in pediatric HGG was confirmed using a tissue microarray. Gene set enrichment analysis revealed that CT antigens are enriched in pediatric HGG clinical specimens with H3.3K27M, with the upregulation of IL13RA2 contributing to the enrichment significantly. These results indicate that the upregulation of CT antigens, such as VCX3A and IL13RA2, correlates with pediatric gliomagenesis. Mol Cancer Res; 16(4); 623-33. ©2018 AACR.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-10086
    Nombre del producto:
    EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit
  • Nuclear levels and patterns of histone H3 modification and HP1 proteins after inhibition of histone deacetylases. 16254244

    The effects of the histone deacetylase inhibitors (HDACi) trichostatin A (TSA) and sodium butyrate (NaBt) were studied in A549, HT29 and FHC human cell lines. Global histone hyperacetylation, leading to decondensation of interphase chromatin, was characterized by an increase in H3(K9) and H3(K4) dimethylation and H3(K9) acetylation. The levels of all isoforms of heterochromatin protein, HP1, were reduced after HDAC inhibition. The observed changes in the protein levels were accompanied by changes in their interphase patterns. In control cells, H3(K9) acetylation and H3(K4) dimethylation were substantially reduced to a thin layer at the nuclear periphery, whereas TSA and NaBt caused the peripheral regions to become intensely acetylated at H3(K9) and dimethylated at H3(K4). The dispersed pattern of H3(K9) dimethylation was stable even at the nuclear periphery of HDACi-treated cells. After TSA and NaBt treatment, the HP1 proteins were repositioned more internally in the nucleus, being closely associated with interchromatin compartments, while centromeric heterochromatin was relocated closer to the nuclear periphery. These findings strongly suggest dissociation of HP1 proteins from peripherally located centromeres in a hyperacetylated and H3(K4) dimethylated environment. We conclude that inhibition of histone deacetylases caused dynamic reorganization of chromatin in parallel with changes in its epigenetic modifications.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • PP1/Repo-Man Dephosphorylates Mitotic Histone H3 at T3 and Regulates Chromosomal Aurora B Targeting. 21514157

    The transient mitotic histone H3 phosphorylation by various protein kinases regulates chromosome condensation and segregation, but the counteracting phosphatases have been poorly characterized [1-8]. We show here that PP1γ is the major histone H3 phosphatase acting on the mitotically phosphorylated (ph) residues H3T3ph, H3S10ph, H3T11ph, and H3S28ph. In addition, we identify Repo-Man, a chromosome-bound interactor of PP1γ [9], as a selective regulator of H3T3ph and H3T11ph dephosphorylation. Repo-Man promotes H3T11ph dephosphorylation by an indirect mechanism but directly and specifically targets H3T3ph for dephosphorylation by associated PP1γ. The PP1γ/Repo-Man complex opposes the protein kinase Haspin-mediated spreading of H3T3ph to the chromosome arms until metaphase and catalyzes the net dephosphorylation of H3T3ph at the end of mitosis. Consistent with these findings, Repo-Man modulates in a PP1-dependent manner the H3T3ph-regulated chromosomal targeting of Aurora kinase B and its substrate MCAK. Our study defines a novel mechanism by which PP1 counteracts Aurora B.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Tip60 histone acetyltransferase acts as a negative regulator of Notch1 signaling by means of acetylation. 17636029

    The Notch signaling pathway appears to perform an important function in a wide variety of organisms and cell types. In our present study, we provide evidence that UV irradiation-induced Tip60 proteins reduced Notch1 activity to a marked degree. Accumulated UV irradiation-induced Tip60 suppresses Notch1 transcriptional activity via the dissociation of the Notch1-IC-CSL complex. The binding between endogenous Tip60 and Notch1-IC in UV radiation-exposed cells was verified in this study by coimmunoprecipitation. Interestingly, the physical interaction of Tip60 with Notch1-IC occurs to a more profound degree in the presence of CSL but does not exist in a trimeric complex. Using Notch1-IC and Tip60 deletion mutants, we also determined that the N terminus, which harbors the RAM domain and seven ankyrin repeats of Notch1-IC, interacts with the zinc finger and acetyl coenzyme A domains of Tip60. Furthermore, here we report that Notch1-IC is a direct target of the acetyltransferase activity of Tip60. Collectively, our data suggest that Tip60 is an inhibitor of the Notch1 signaling pathway and that Tip60-dependent acetylation of Notch1-IC may be relevant to the mechanism by which Tip60 suppresses Notch1 signaling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-038
  • The histone variant MacroH2A1 regulates target gene expression in part by recruiting the transcriptional coregulator PELP1. 24752897

    MacroH2A1 is a histone variant harboring an ∼25-kDa carboxyl-terminal macrodomain. Due to its enrichment on the inactive X chromosome, macroH2A1 was thought to play a role in transcriptional repression. However, recent studies have shown that macroH2A1 occupies autosomal chromatin and regulates genes in a context-specific manner. The macrodomain may play a role in the modulation of gene expression outcomes via physical interactions with effector proteins, which may depend on the ability of the macrodomain to bind NAD(+) metabolite ligands. Here, we identify proline, glutamic acid, and leucine-rich protein 1 (PELP1), a chromatin-associated factor and transcriptional coregulator, as a ligand-independent macrodomain-interacting factor. We used chromatin immunoprecipitation coupled with tiling microarrays (ChIP-chip) to determine the genomic localization of PELP1 in MCF-7 human breast cancer cells. We find that PELP1 genomic localization is highly correlated with that of macroH2A1. Additionally, PELP1 positively correlates with heterochromatic chromatin marks and negatively correlates with active transcription marks, much like macroH2A1. MacroH2A1 specifically recruits PELP1 to the promoters of macroH2A1 target genes, but macroH2A1 occupancy occurs independent of PELP1. This recruitment allows macroH2A1 and PELP1 to cooperatively regulate gene expression outcomes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-219
  • HBO1 is required for H3K14 acetylation and normal transcriptional activity during embryonic development. 21149574

    We report here that the MYST histone acetyltransferase HBO1 (histone acetyltransferase bound to ORC; MYST2/KAT7) is essential for postgastrulation mammalian development. Lack of HBO1 led to a more than 90% reduction of histone 3 lysine 14 (H3K14) acetylation, whereas no reduction of acetylation was detected at other histone residues. The decrease in H3K14 acetylation was accompanied by a decrease in expression of the majority of genes studied. However, some genes, in particular genes regulating embryonic patterning, were more severely affected than "housekeeping" genes. Development of HBO1-deficient embryos was arrested at the 10-somite stage. Blood vessels, mesenchyme, and somites were disorganized. In contrast to previous studies that reported cell cycle arrest in HBO1-depleted cultured cells, no defects in DNA replication or cell proliferation were seen in Hbo1 mutant embryo primary fibroblasts or immortalized fibroblasts. Rather, a high rate of cell death and DNA fragmentation was observed in Hbo1 mutant embryos, resulting initially in the degeneration of mesenchymal tissues and ultimately in embryonic lethality. In conclusion, the primary role of HBO1 in development is that of a transcriptional activator, which is indispensable for H3K14 acetylation and for the normal expression of essential genes regulating embryonic development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo