Epigenetic changes by zebularine leading to enhanced differentiation of human promyelocytic leukemia NB4 and KG1 cells. Savickiene J, Treigyte G, Jonusiene V, Bruzaite R, Borutinskaite VV, Navakauskiene R Molecular and cellular biochemistry
359
245-61. Epub 2011 Aug 13.
2012
Show Abstract
Aberrant DNA methylation is a critical epigenetic process involved in gene expression of tumor cells. Diverse DNA methyltransferase inhibitors are being studied as potential anticancer drugs, and there is interest in developing novel and more effective DNMTIs. We evaluated zebularine, a stable and low-toxic cytidine analog, effects on human promyelocytic leukemia cell lines, NB4 and KG1. Zebularine caused a dose- and time-dependent NB4 and KG1 cell growth inhibition, did not induce myeloid differentiation but triggered concentration-dependent apoptosis as manifested by procaspase-3 and PAR-1 cleavage and the occurrence of early apoptosis detected by Annexin-V-propidium iodide. Zebularine co-treatment with all-trans retinoic acid (RA) at pharmacological dose (1 μM for NB4 cells) and higher (3 μM for KG1 cells) increased granulocytic differentiation in both cell lines. Pretreatment for 24 or 48 h with zebularine before the treatment with different doses of RA alone or RA with histone deacetylase inhibitors, phenyl butyrate, and BML-210, resulted in significant acceleration and enhancement of differentiation and cell cycle arrest at G0/1. Zebularine alone or in sequential combination with RA decreased expression of DNMT1, caused fast and time-dependent expression of pan-cadherin and partial demethylation of E-cadherin but not tumor suppressor p15. When used in combination with RA, zebularine increased expression of both genes transcript and protein. Zebularine induced regional chromatin remodeling by local histone H4 acetylation and histone H3-K4 methylation in promoter sites of methylated E-cadherin and also in the promoter of unmethylated p21 as evidenced by chromatin immunoprecipitation assay. Our results extend the spectrum of zebularine effects and the evaluation its utility in acute myeloid leukemia therapy based on epigenetics. | 21842375
 |
Homozygous loss of ADAM3A revealed by genome-wide analysis of pediatric high-grade glioma and diffuse intrinsic pontine gliomas. Barrow J, Adamowicz-Brice M, Cartmill M, MacArthur D, Lowe J, Robson K, Brundler MA, Walker DA, Coyle B, Grundy R. Neuro-oncology
13
212-22
2011
Show Abstract
Overall, pediatric high-grade glioma (pHGG) has a poor prognosis, in part due to the lack of understanding of the underlying biology. High-resolution 244 K oligo array comparative genomic hybridization (CGH) was used to analyze DNA from 38 formalin-fixed paraffin-embedded predominantly pretreatment pHGG samples, including 13 diffuse intrinsic pontine gliomas (DIPGs). The patterns of gains and losses were distinct from those seen in HGG arising in adults. In particular, we found 1q gain in up to 27% of our cohort compared with 9% reported in adults. A total of 13% had a balanced genetic profile with no large-scale copy number alterations. Homozygous loss at 8p12 was seen in 6 of 38 (16%) cases of pHGG. This novel deletion, which includes the ADAM3A gene, was confirmed by quantitative real-time PCR (qPCR). Loss of CDKN2A/CDKN2B in 4 of 38 (10%) samples by oligo array CGH was confirmed by fluorescent in situ hybridization on tissue microarrays and was restricted to supratentorial tumors. Only ∼50% of supratentorial tumors were positive for CDKN2B expression by immunohistochemistry (IHC), while ∼75% of infratentorial tumors were positive for CDKN2B expression (P = 0.03). Amplification of the 4q11-13 region was detected in 8% of cases and included PDGFRA and KIT, and subsequent qPCR analysis was consistent with the amplification of PDGFRA. MYCN amplification was seen in 5% of samples being significantly associated with anaplastic astrocytomas (P= 0.03). Overall, DIPG shared similar spectrum of changes to supratentorial HGG with some notable differences, including high-frequency loss of 17p and 14q and lack of CDKN2A/CDKN2B deletion. Informative genetic data providing insight into the underlying biology and potential therapeutic possibilities can be generated from archival tissue and typically small biopsies from DIPG. Our findings highlight the importance of obtaining pretreatment samples. | 21138945
 |