The significance of pore microarchitecture in a multi-layered elastomeric scaffold for contractile cardiac muscle constructs. Hyoungshin Park,Benjamin L Larson,Maxime D Guillemette,Saloni R Jain,Casey Hua,George C Engelmayr,Lisa E Freed Biomaterials
32
2011
Show Abstract
Multi-layered poly(glycerol-sebacate) (PGS) scaffolds with controlled pore microarchitectures were fabricated, combined with heart cells, and cultured with perfusion to engineer contractile cardiac muscle constructs. First, one-layered (1L) scaffolds with accordion-like honeycomb shaped pores and elastomeric mechanical properties were fabricated by laser microablation of PGS membranes. Second, two-layered (2L) scaffolds with fully interconnected three dimensional pore networks were fabricated by oxygen plasma treatment of 1L scaffolds followed by stacking with off-set laminae to produce a tightly bonded composite. Third, heart cells were cultured on scaffolds with or without interstitial perfusion for 7 days. The laser-microablated PGS scaffolds exhibited ultimate tensile strength and strain-to-failure higher than normal adult rat left ventricular myocardium, and effective stiffnesses ranging from 220 to 290 kPa. The 7-day constructs contracted in response to electrical field stimulation. Excitation thresholds were unaffected by scaffold scale up from 1L to 2L. The 2L constructs exhibited reduced apoptosis, increased expression of connexin-43 (Cx-43) and matrix metalloprotease-2 (MMP-2) genes, and increased Cx-43 and cardiac troponin-I proteins when cultured with perfusion as compared to static controls. Together, these findings suggest that multi-layered, microfabricated PGS scaffolds may be applicable to myocardial repair applications requiring mechanical support, cell delivery and active implant contractility. | | 21144580
 |
The connexin43 C-terminal region mediates neuroprotection during stroke. Kozoriz MG, Bechberger JF, Bechberger GR, Suen MW, Moreno AP, Maass K, Willecke K, Naus CC Journal of neuropathology and experimental neurology
69
196-206
2010
Show Abstract
Connexin43 plays an important role in neuroprotection in experimental stroke models; reducing the expression of this gap junction protein in astrocytes enhances injury upon middle cerebral artery occlusion (MCAO). Because the C-terminal region of connexin43 isimportant for channel activity, we carried out MCAO stroke experiments in mice expressing a truncated form of connexin43 (Cx43DeltaCT mice). Brain sections were analyzed for infarct volume, astrogliosis, and inflammatory cell invasion 4 days after MCAO. Adult cortices and astrocyte cultures were examined for connexin43 (Cx43) expression by immunohistochemistry and Western blot. Cultured astrocytes were also examined for dye coupling, channel conductance, hemichannel activity, and Ca wave propagation. The Cx43DeltaCT mice exhibit enhanced cerebral injury after stroke. Astrogliosis was reduced and inflammatory cell invasion was increased inthe peri-infarct region in these mice compared with controls; Cx43 expression was also altered. Lastly, cultured astrocytes from Cx43DeltaCT mice were less coupled and displayed alterations in channel gating, hemichannel activity, and Ca wave properties. These results suggest that astrocytic Cx43 contributed to the regulation of cell death after stroke and support the view that the Cx43 C-terminal region is important in protection in cerebral ischemia. | | 20084014
 |
Gap junctions: structure and function (Review). Evans, W Howard and Martin, Patricia E M Mol. Membr. Biol., 19: 121-36 (2002)
2002
Show Abstract
Gap junctions are plasma membrane spatial microdomains constructed of assemblies of channel proteins called connexins in vertebrates and innexins in invertebrates. The channels provide direct intercellular communication pathways allowing rapid exchange of ions and metabolites up to approximately 1 kD in size. Approximately 20 connexins are identified in the human or mouse genome, and orthologues are increasingly characterized in other vertebrates. Most cell types express multiple connexin isoforms, making likely the construction of a spectrum of heteromeric hemichannels and heterotypic gap junctions that could provide a structural basis for the charge and size selectivity of these intercellular channels. The precise nature of the potential signalling information traversing junctions in physiologically defined situations remains elusive, but extensive progress has been made in elucidating how connexins are assembled into gap junctions. Also, participation of gap junction hemichannels in the propagation of calcium waves via an extracellular purinergic pathway is emerging. Connexin mutations have been identified in a number of genetically inherited channel communication-opathies. These are detected in connexin 32 in Charcot Marie Tooth-X linked disease, in connexins 26 and 30 in deafness and skin diseases, and in connexins 46 and 50 in hereditary cataracts. Biochemical approaches indicate that many of the mutated connexins are mistargeted to gap junctions and/or fail to oligomerize correctly into hemichannels. Genetic ablation approaches are helping to map out a connexin code and point to specific connexins being required for cell growth and differentiation as well as underwriting basic intercellular communication. | | 12126230
 |
Stage-specific and differential expression of gap junctions in the mouse ovary: connexin-specific roles in follicular regulation. Wright, C S, et al. Reproduction, 121: 77-88 (2001)
2001
Show Abstract
Gap junction communication plays an essential role in follicle growth. Immunocytochemistry and confocal microscopy were used to examine the expression of gap junction connexins of the alpha and beta subfamilies in follicles from primordial to preovulatory stages in the ovaries of prepubertal and adult mice. Connexin-specific antibodies detected alpha(1), alpha(4), alpha(6), beta(1), beta(2) and beta(4) connexins within follicles. In adult ovaries connexin immunolabelling was stronger in larger (more mature) follicles than it was in smaller follicles, with comparatively reduced labelling detected in prepubertal ovaries. In healthy follicles, labelling for alpha subfamily connexins was detected between granulosa cells, whereas labelling for beta subfamily connexins was found in the theca. Labelling for beta subfamily connexins and alpha(4) connexin (preantral stage) was detected on the oocyte surface membrane. In atretic follicles, labelling for beta(4) connexin appeared between the granulosa cells. These results demonstrate that alpha and beta connexin subfamilies are segregated to separate cellular compartments in the mouse follicle. The results are discussed in the light of possible roles for differential gap junctional communication in the regulation of folliculogenesis, oocyte maturation and atresia. | Immunohistochemistry (Tissue) | 11226030
 |