Millipore Sigma Vibrant Logo
 

adjuvant


232 Results Advanced Search  
Showing
Products (0)
Documents (224)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (135)
  • (87)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • PHY906(KD018), an adjuvant based on a 1800-year-old Chinese medicine, enhanced the anti-tumor activity of Sorafenib by changing the tumor microenvironment. 25819872

    PHY906 (KD018) is a four-herb Chinese Medicine Formula. It has been shown to potentially enhance the therapeutic indices of different class anticancer agents in vivo. Here, PHY906 is reported to enhance the anti-tumor activity of Sorafenib in nude mice bearing HepG2 xenografts. Among the four herbal ingredients of PHY906, Scutellaria baicalensis Georgi (S) and Paeonia lactiflora Pall (P) are required; however, S plays a more important role than P in increasing tumor apoptosis induced by Sorafenib with an increase of mouse(m)FasL and human(h)FasR expression. PHY906 may potentiate Sorafenib action by increasing hMCP1 expression and enhancing infiltration of macrophages into tumors with a higher M1/M2 (tumor rejection) signature expression pattern, as well as affect autophagy by increasing AMPKα-P and ULK1-S555-P of tumors. Depletion of macrophage could counteract PHY906 to potentiate the anti-tumor activity of Sorafenib. It was reported that tumor cells with higher levels of ERK1/2-P are more susceptible to Sorafenib, and the S component of PHY906 may increase ERK1/2-P via inhibition of ERK1/2 phosphatase in HepG2 tumors. PHY906 may potentiate the anti-hepatoma activity of Sorafenib by multiple mechanisms targeting on the inflammatory state of microenvironment of tumor tissue through two major ingredients (P and S) of PHY906.
    Document Type:
    Reference
    Product Catalog Number:
    ABC124
    Product Catalog Name:
    Anti-phospho-ULK1 (Ser555) Antibody
  • Pathologic findings from the National Surgical Adjuvant Breast and Bowel Project: prognostic significance of erbB-2 protein overexpression in primary breast cancer. 1967301

    In order to investigate the prognostic significance of erbB-2 overexpression, immunohistochemical staining for the erbB-2 protein was performed on sections from paraffin blocks of 292 primary invasive breast cancers obtained from women enrolled in the National Surgical Adjuvant Breast and Bowel Project (NSABP) protocol B-06. Positive reaction indicative of erbB-2 overexpression was observed on tumor cells in 62 (21%) samples. Women whose cancers were judged to have erbB-2 overexpression had a significantly worse overall survival (P = .0012) with twice the mortality rate of women without detectable erbB-2 expression. No statistically significant effect was evident for disease-free survival (P = .22). In multivariate analysis, detection of erbB-2 overexpression was the second most predictive independent variable for survival after nodal status. Overexpression of erbB-2 was more common among tumors of poor nuclear grade (29%) than those of good nuclear grade (12%). The association of erbB-2 overexpression with decreased survival was evident only among women with tumors of good nuclear grade. In this subgroup, erbB-2 overexpression was associated with an approximately fivefold increase in mortality rate (P = .00001). The combined predictive value of erbB-2 overexpression and nuclear grade was evident regardless of their lymph node status. These results provide evidence that detection of erbB-2 overexpression may be an independent prognostic variable for patient survival. Moreover, when combined with evaluation of nuclear grade, it may be possible to use immunostaining for erbB-2 protein to identify patients at increased risk from within a relatively low-risk group.
    Document Type:
    Reference
    Product Catalog Number:
    06-562
    Product Catalog Name:
    Anti-erbB-2/HER-2 Antibody
  • Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. 16100572

    Amyloid beta-peptide (Abeta) appears to play a key pathogenic role in Alzheimer disease (AD). Immune therapy in mouse models of AD via Abeta immunization or passive administration of Abeta antibodies markedly reduces Abeta levels and reverses behavioral impairment. However, a human trial of Abeta immunization led to meningoencephalitis in some patients and was discontinued. Here we show that nasal vaccination with a proteosome-based adjuvant that is well tolerated in humans plus glatiramer acetate, an FDA-approved synthetic copolymer used to treat multiple sclerosis, potently decreases Abeta plaques in an AD mouse model. This effect did not require the presence of antibody, as it was observed in B cell-deficient (Ig mu-null) mice. Vaccinated animals developed activated microglia that colocalized with Abeta fibrils, and the extent of microglial activation correlated strongly with the decrease in Abeta fibrils. Activation of microglia and clearing of Abeta occurred with the adjuvant alone, although to a lesser degree. Our results identify a novel approach to immune therapy for AD that involves clearing of Abeta through the utilization of compounds that have been safely tested on or are currently in use in humans.
    Document Type:
    Reference
    Product Catalog Number:
    AB5382
    Product Catalog Name:
    Anti-Nitric Oxide Synthase II Antibody
  • alpha-Galactosylceramide can act as a nasal vaccine adjuvant inducing protective immune responses against viral infection and tumor. 16116223

    alpha-Galactosylceramide (alpha-GalCer) is a ligand of invariant Valpha14+ NKT cells and is presented by CD1d molecule on APC. NKT cells produce a large amount of Th1 and Th2 cytokines in response to alpha-GalCer-presented APC. In this study, we assessed whether alpha-GalCer could act as an effective nasal vaccine adjuvant for mucosal vaccine that would be capable of inducing systemic as well as mucosal immune responses. When alpha-GalCer was administered with OVA via the intranasal route to C57BL/6 and BALB/c mice, significant OVA-specific mucosal secretory IgA, systemic IgG, and CTL responses were induced with mixed Th1 and Th2 cytokine profiles seen in both strains of mice. Interestingly, as BALB/c mice were intranasally immunized with PR8 hemagglutinin Ag isolated from influenza virus A/PR/8/34 together with alpha-GalCer, significant protection was afforded against influenza viral infection. When alpha-GalCer was coimmunized with a replication-deficient live adenovirus to BALB/c mice, it significantly induced both humoral and cellular immune responses. In addition, intranasal administration of OVA with alpha-GalCer showed complete protection against EG7 tumor challenge in C57BL/6. The adjuvant effects induced by intranasal coadministration with alpha-GalCer were blocked in CD1d-/- mice, indicating that the immune responses were exclusively mediated by CD1d molecule on APC. Most interestingly, intranasally coadministered alpha-GalCer activated naive T cells and triggered them to differentiate into functional effector T cells when CFSE-labeled OT-1 cells were adoptively transferred into syngeneic mice. Overall, our results are the first to show that alpha-GalCer can act as a nasal vaccine adjuvant inducing protective immune responses against viral infections and tumors.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple