Millipore Sigma Vibrant Logo
 

alizarin+red


22 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Human adipose-derived adult stem cells produce osteoid in vivo. 15165454

    Adult subcutaneous fat tissue is an abundant source of multipotent cells. Previous studies from our laboratory have shown that, in vitro, adipose-derived adult stem (ADAS) cells express bone marker proteins including alkaline phosphatase, type I collagen, osteopontin, and osteocalcin and produce a mineralized matrix as shown by alizarin red staining. In the current study, the ADAS cell ability to form osteoid in vivo was determined. ADAS cells were isolated from liposuction waste of three individual donors and expanded in vitro before implantation. Equal numbers of cells (3 x 10(6)) were loaded onto either hydroxyapatite/tricalcium phosphate (HA-TCP) cubes or the collagen/HA-TCP composite matrix, Collagraft, and then implanted subcutaneously into SCID mice. After 6 weeks, implants were removed, fixed, and demineralized and sectioned for hematoxylin and eosin staining. Osteoid formation was observed in 80% of HA-TCP implants loaded with ADAS cells. Only 20% of Collagraft implants were positive for the presence of osteoid matrix. Whereas 100% of HA-TCP implants loaded with hFOB 1.19 cells formed osteoid, Collagraft loaded with hFOB 1.19 cells displayed a high degree of adipose tissue within the matrix. Immunostaining of serial sections for human nuclear antigen demonstrated that the osteoid contained human cells. Osteoid formation was not observed in control HA-TCP or Collagraft matrices implanted without cells. In summary, the data demonstrate the ability of ADAS cells to form osteoid matrix in vivo. Because of their abundance and accessibility, ADAS cells may prove to be a novel cell therapeutic for bone repair and regeneration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1281
    Product Catalog Name:
    Anti-Nuclei Antibody, clone 235-1
  • Lnc-NTF3-5 promotes osteogenic differentiation of maxillary sinus membrane stem cells via sponging miR-93-3p. 29106055

    The function and the mechanism of long non-coding RNAs (lncRNAs) on the osteogenic differentiation of maxillary sinus membrane stem cells (MSMSCs) remain largely unknown.The expression of lnc-NTF3-5 and Runt-related transcription factor 2 (RUNX2), Osterix (OSX), and Alkaline Phosphatase (ALP) was examined by quantitative real-time PCR (qRT-PCR) in MSMSCs during the process osteogenic differentiation. Then the function of lnc-NTF3-5 was evaluated by loss- and gain-of-function techniques, as well as qRT-PCR, western blot, and Alizarin Red staining. In addition, the microRNAs (miRNAs) sponge potential of lnc-NTF3-5 was assessed through RNA immunoprecipitation, dual luciferase reporter assay, and in vivo ectopic bone formation.Lnc-NTF3-5, RUNX2, OSX, and ALP increased alone with the differentiation. Inhibition of lnc-NTF3-5 decreased the expression of RUNX2, OSX, and ALP both at mRNA and protein levels. Alizarin red staining showed similar trend. In contrast, overexpression of lnc-NTF3-5 presented totally opposite effects. Besides, overexpression of lnc-NTF3-5 could decrease the expression of microRNA-93-3p (miR-93-3p). Enhance miR-93-3p could also inhibit the expression level of lnc-NTF3-5. RNA immunoprecipitation demonstrated that lnc-NTF3-5 is directly bound to miR-93-3p and dual luciferase reporter assay proved that miR-93-3p targets 3' UTR of RUNX2 to regulate its expression. Ultimately, in vivo bone formation study showed that lnc-NTF3-5 and miR-93-3p inhibitor co-transfection group displayed the strongest bone formation.The novel pathway lnc-NTF3-5/miR-93-3p/RUNX2 could regulate osteogenic differentiation of MSMSCs and might serve as a therapeutic target for bone regeneration in the posterior maxilla.
    Document Type:
    Reference
    Product Catalog Number:
    17-700
    Product Catalog Name:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • LncRNA MALAT1 sponges miR-204 to promote osteoblast differentiation of human aortic valve interstitial cells through up-regulating Smad4. 28522163

    Emerging evidences have indicated that long non-coding RNAs (lncRNAs) play vital roles in cardiovascular physiology and pathology. The lncRNA MALAT1, a highly abundant and conserved imprinted gene, has been implicated in many cardiovascular diseases. However, the function of MALAT1 in calcific aortic valve disease (CAVD) remains unknown. This study sought to document the function and underlying mechanism of MALAT1 in regulating CAVD.Protein level was determined by immunoblotting and immunofluorescence staining. MALAT1, miR-204 and mRNA expressions were detected by qRT-PCR. Mineralized bone matrix formation was assessed by Alizarin Red staining. The interaction between MALAT1 and miR-204 was studied using luciferase reporter assay, RNA pull-down assay and RNA-binding protein immunoprecipitation assay.Ectopic expression of MALAT1 was observed in calcific valves and after osteogenic induction in human aortic valve interstitial cells (VICs). In vitro experiments revealed that MALAT1 acted as a positive regulator of osteogenic differentiation by repressing miR-204 expression and activity and thereby promoting expression of osteoblast-specific markers, including alkaline phosphatase, mineralized bone matrix formation and osteocalcin. Mechanistically, we identified Smad4 as a direct target of miR-204. Importantly, MALAT1 could directly interact with miR-204 and overexpression of miR-204 efficiently reversed the upregulation of Smad4 induced by MALAT1. Thus, MALAT1 positively regulated the expression of Smad4 through sponging miR-204, and promoted osteogenic differentiation of VICs.Our study provides novel mechanistic insights into a critical role for lncRNA MALAT1 as a miRNA sponge in CAVD and sheds new light on lncRNA-directed diagnostics and therapeutics in CAVD.
    Document Type:
    Reference
    Product Catalog Number:
    17-700
    Product Catalog Name:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Corneal endothelial autocrine VIP enhances its integrity in stored human donor corneoscleral explant. 21482640

    To demonstrate corneal endothelial (CE) integrity enhanced during eye banking by a brief treatment of human donor corneoscleral explant (explant) with CE autocrine trophic factor vasoactive intestinal peptide (VIP).Paired explants were used as control versus VIP (10 nM)-treated before storage in corneal storage medium (4°C). CE ciliary neurotrophic factor receptor (CNTFRα) and CNTF (0.83 nM) responsiveness in connexin 43 upregulation were monitored (Western blot analysis). CE damage in CNTF-modulated explants and corneal buttons from explants was quantified by analysis of panoramic and microscopic images of the alizarin red-stained corneal endothelium. CE cells scraped from the Descemet's membrane were counted. CE VIP receptor was demonstrated (Western blot analysis).CE cells in every VIP-treated, freshly dissected explant demonstrated higher CNTFRα levels than controls (100% vs. 142% ± 15%; P = 0.014; 7 pairs stored for 4 to 25 days). Nine days after VIP treatment of previously preserved explants, CNTF responsiveness was 174% ± 23% (P = 0.023; 4 pairs) of controls. Panoramic images of explants and corneal buttons revealed that VIP treatment reduced CE damage to 75% ± 6% (P = 0.023; 4 pairs) and 71% ± 11% (P = 0.016; 9 pairs) of controls, respectively, whereas CE damage to 39% (2 pairs) and 23% ± 4% (P less than 0.001; 7 pairs), respectively, was revealed in microscopic images. Twenty-one days after VIP treatment of previously preserved explants, CE cell retention was 206% ± 38% (P = 0.008; 14 pairs) of the control. CE cells from human donor corneas expressed VIP receptor VPAC1 (not VPAC2).CE integrity during eye banking was enhanced by a brief treatment of the explant with the CE autocrine VIP.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. 22037351

    Osteosarcoma (OS) is the common histological form of primary bone cancer and one of the leading aggressive cancers in children under age fifteen. Although several genetic predisposing conditions have been associated with OS the understanding of its molecular etiology is limited. Here, we show that microRNAs (miRNAs) at the chr.14q32 locus are significantly downregulated in osteosarcoma compared to normal bone tissues. Bioinformatic predictions identified that a subset of 14q32 miRNAs (miR-382, miR-369-3p, miR-544 and miR-134) could potentially target cMYC transcript. The physical interaction between these 14q32 miRNAs and cMYC was validated using reporter assays. Further, restoring expression of these four 14q32 miRNAs decreased cMYC levels and induced apoptosis in Saos2 cells. We also show that exogenous expression of 14q32 miRNAs in Saos2 cells significantly downregulated miR-17-92, a transcriptional target of cMYC. The pro-apoptotic effect of 14q32 miRNAs in Saos2 cells was rescued either by overexpression of cMYC cDNA without the 3'UTR or with miR-17-92 cluster. Further, array comparative genomic hybridization studies showed no DNA copy number changes at 14q32 locus in OS patient samples suggesting that downregulation of 14q32 miRNAs are not due to deletion at this locus. Together, our data support a model where the deregulation of a network involving 14q32 miRNAs, cMYC and miR-17-92 miRNAs could contribute to osteosarcoma pathogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    ECM815
    Product Catalog Name:
    Osteogenesis Quantitation Kit
  • The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. 22483243

    In this study, the effect of ordered rod-like FA coatings of metal discs on adipose-derived stem cell (ASC)'s growth, differentiation and mineralization was studied in vitro; and their mineral inductive effects in vivo. After 3 and 7 days, the cell number on the metal surfaces was significantly higher than those on the ordered and disordered FA surfaces. However, after 4 weeks much greater amounts of mineral formation was induced on the two FA surfaces with and even without osteogenesis induction. The osteogenic profiles showed the up regulation of a set of pro-osteogenic transcripts and bone mineralization phenotypic markers when the ASCs were grown on FA surfaces compared to metal surfaces at 7 and 21 days. In addition to BMP and TGFβ signaling pathways, EGF and FGF pathways also appeared to be involved in ASC differentiation and mineralization. In vivo studies showed accelerated and enhanced mineralized tissue formation integrated within ordered FA coatings. After 5 weeks, over 80% of the ordered FA coating was integrated with a mineralized tissue layer covering the implants. Both the intrinsic properties of the FA crystals and the topography of the FA coating appeared to dominate the cell differentiation and mineralization process.
    Document Type:
    Reference
    Product Catalog Number:
    ECM815
    Product Catalog Name:
    Osteogenesis Quantitation Kit
  • VIP and VIP gene silencing modulation of differentiation marker N-cadherin and cell shape of corneal endothelium in human corneas ex vivo. 18441300

    Vasoactive intestinal peptide (VIP) is expressed by corneal endothelial (CE) cells and is present in the aqueous humor, which bathes CE cells in vivo. This study demonstrated the role of CE cell VIP in maintaining the expression level of a CE differentiation marker, N-cadherin, and the hexagonal cell shape.To determine the most effective VIP concentration, bovine corneoscleral explants were treated with 0 (control) and 10(-12) to 10(-6) M VIP. Paired human corneas (nine donors) from an eye bank were used as control; the other corneas were treated with VIP. To silence endogenous VIP, paired fresh human donor corneas (from seven cadavers) were transduced with VIP shRNA or the control lentiviral particles and then bisected/quartered for quantitative analysis by semiquantitative RT-PCR (for mRNA) and Western blot analysis/immunocytochemistry (for protein), whereas alizarin red S staining revealed CE cell shape.VIP concentration dependently increased bovine CE cell N-cadherin mRNA levels, with the maximal effect observed between 10(-10) (1.47 +/- 0.06-fold; P = 0.002) and 10(-8) M VIP (1.48 +/- 0.18-fold; P = 0.012). VIP (10(-8) M) treatment increased N-cadherin protein levels in bovine and human CE cells to 1.98 +/- 0.28-fold (P = 0.005) and 1.17 +/- 0.10 (range, 0.91-1.87)-fold (P = 0.050) of their respective controls. VIP antagonist (SN)VIPhyb diminished the VIP effect. VIP silencing resulted in deterioration of the hexagonal cell shape and decreased levels of VIP protein and mRNA, N-cadherin (but not connexin-43) mRNA and protein, and the antiapoptotic Bcl-2 protein.Through its autocrine VIP, CE cells play an active role in maintaining the differentiated state and suppressing apoptosis in the corneal endothelium in situ.
    Document Type:
    Reference
    Product Catalog Number:
    05-729
    Product Catalog Name:
    Anti-Bcl2 Antibody, clone 100
  • Adhesion, vitality and osteogenic differentiation capacity of adipose derived stem cells seeded on nitinol nanoparticle coatings. 23308190

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Effect of intermittent PTH(1-34) on human periodontal ligament cells transplanted into immunocompromised mice. 22497226

    Residual periodontal ligament (PDL) cells in the damaged tissue are considered a prerequisite for a successful regeneration of the periodontal architecture with all its components, including gingiva, PDL, cementum, and bone. Among other approaches, current concepts in tissue engineering aim at a hormonal support of the regenerative capacity of PDL cells as well as at a supplementation of lost cells for regeneration. Here, we investigated how far an anabolic, intermittent parathyroid hormone (iPTH) administration would enhance the osteoblastic differentiation of PDL cells and the cellular ability to mineralize the extracellular matrix in an in vivo transplantation model. PDL cells were predifferentiated in a standard osteogenic medium for 3 weeks before subcutaneous transplantation into CD-1 nude mice using gelatin sponges as carrier. Daily injections of 40 μg/kg body weight PTH(1-34) or an equivalent dose of vehicle for 4 weeks were followed by explantation of the specimens and an immunohistochemical analysis of the osteoblastic marker proteins alkaline phosphatase (ALP), osteopontin, and osteocalcin. Signs of biomineralization were visualized by means of alizarin red staining. For verification of the systemic effect of iPTH application, blood serum levels of osteocalcin were determined. The osteogenic medium stimulated the expression of ALP and PTH1-receptor mRNA in the cultures. After transplantation, iPTH resulted in an increased cytoplasmic and extracellular immunoreactivity for all markers investigated. In contrast to only sporadic areas of mineralization under control conditions, several foci of mineralization were observed in the iPTH group. Blood serum levels of osteocalcin were elevated significantly with iPTH. These data indicate that the osteoblastic differentiation of human PDL cells and their ability for biomineralization can be positively influenced by iPTH in vivo. These findings hold out a promising prospect for the support of periodontal regeneration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1281
    Product Catalog Name:
    Anti-Nuclei Antibody, clone 235-1