Millipore Sigma Vibrant Logo
 

chelating-resin


16 Results Advanced Search  
Showing
Products (0)
Documents (3)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. 22798143

    The genetic mutation in Friedreich ataxia (FRDA) is a hyperexpansion of the triplet-repeat sequence GAA·TTC within the first intron of the FXN gene. Although yeast and reporter construct models for GAA·TTC triplet-repeat expansion have been reported, studies on FRDA pathogenesis and therapeutic development are limited by the availability of an appropriate cell model in which to study the mechanism of instability of the GAA·TTC triplet repeats in the human genome. Herein, induced pluripotent stem cells (iPSCs) were generated from FRDA patient fibroblasts after transduction with the four transcription factors Oct4, Sox2, Klf4, and c-Myc. These cells were differentiated into neurospheres and neuronal precursors in vitro, providing a valuable cell model for FRDA. During propagation of the iPSCs, GAA·TTC triplet repeats expanded at a rate of about two GAA·TTC triplet repeats/replication. However, GAA·TTC triplet repeats were stable in FRDA fibroblasts and neuronal stem cells. The mismatch repair enzymes MSH2, MSH3, and MSH6, implicated in repeat instability in other triplet-repeat diseases, were highly expressed in pluripotent stem cells compared with fibroblasts and neuronal stem cells and occupied FXN intron 1. In addition, shRNA silencing of MSH2 and MSH6 impeded GAA·TTC triplet-repeat expansion. A specific pyrrole-imidazole polyamide targeting GAA·TTC triplet-repeat DNA partially blocked repeat expansion by displacing MSH2 from FXN intron 1 in FRDA iPSCs. These studies suggest that in FRDA, GAA·TTC triplet-repeat instability occurs in embryonic cells and involves the highly active mismatch repair system.
    Document Type:
    Reference
    Product Catalog Number:
    AB5622
    Product Catalog Name:
    Anti-Microtubule-Associated Protein 2 (MAP2) Antibody
  • Mechanism of the vascular angiotensin II/alpha2-adrenoceptor interaction. 15901799

    alpha(2)-Adrenoceptors potentiate vascular responses to angiotensin II. The goal of this study was to test the hypothesis that the phospholipase C (PLC)/protein kinase C (PKC)/c-src/phosphatidylinositol 3-kinase (PI3K) pathway contributes to the vascular angiotensin II/alpha(2)-adrenoceptor interaction. In rats in vivo, intrarenal infusions of angiotensin II (10 ng/kg/min) increased renal vascular resistance by 5.8 +/- 0.5 units, and this response was enhanced (p less than 0.05) to 9.1 +/- 1.2 units by UK-14,304 [5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine; 3 microg/kg/min; alpha(2)-adrenoceptor agonist]. Intrarenal infusions of U-73122 [1-[6-[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]-hexyl]-1H-pyrrole-2,5-dione; 3 microg/min; PLC inhibitor], GF109203X [bisindolylmaleimide I; 10 microg/min; PKC inhibitor], CGP77675 [1-(2-{4-[4-amino-5-(3-methoxyphenyl)pyrrolo[2,3-d]pyrimidin-7-yl]phenyl}ethyl)piperidin-4-ol; 5 microg/min; c-src inhibitor], and wortmannin (1 microg/min; PI3K inhibitor) abolished the angiotensin II/alpha(2)-adrenoceptor interaction. In isolated perfused rat kidneys, angiotensin II (0.3, 1, and 3 nM) increased perfusion pressure (by 15 +/- 8, 39 +/- 4, and 93 +/- 9 mm Hg, respectively), and UK-14,304 (1 microM) potentiated these responses (to 36 +/- 4, 67 +/- 7, and 135 +/- 17 mm Hg, respectively). This angiotensin II/alpha(2)-adrenoceptor interaction was abolished by U-73122 (10 microM), GF109203X (3 microM), CGP77675 (5 microM), and wortmannin (0.2 microM). Preglomerular microvascular smooth muscle cells expressed phospholipase (PLC)-beta(2), PLC-beta(3), c-src, phospho(tyrosine 416)-c-src, and PI3K. In these cells, angiotensin II (0.1 microM) and UK-14,304 (1 microM) per se did not increase phospho-c-src; however, the combination of angiotensin II plus UK-14,304 doubled phospho-c-src, and this interaction was abolished by U-73122 (10 microM) and GF109203X (3 microM). In conclusion, the PLC/PKC/c-src/PI3K pathway may contribute importantly to the interaction between alpha(2)-adrenoceptors and angiotensin II on renal vascular resistance.
    Document Type:
    Reference
    Product Catalog Number:
    05-677
    Product Catalog Name:
    Anti-phospho-Src (Tyr416) Antibody, clone 9A6
  • Protein Phosphatase 2a and glycogen synthase kinase 3 signaling modulate prepulse inhibition of the acoustic startle response by altering cortical M-Type potassium channe ... 20592205

    There is considerable interest in the regulation of sensorimotor gating, since deficits in this process could play a critical role in the symptoms of schizophrenia and other psychiatric disorders. Sensorimotor gating is often studied in humans and rodents using the prepulse inhibition of the acoustic startle response (PPI) model, in which an acoustic prepulse suppresses behavioral output to a startle-inducing stimulus. However, the molecular and neural mechanisms underlying PPI are poorly understood. Here, we show that a regulatory pathway involving protein phosphatase 2A (PP2A), glycogen synthase kinase 3 beta (GSK3beta), and their downstream target, the M-type potassium channel, regulates PPI. Mice (Mus musculus) carrying a hypomorphic allele of Ppp2r5delta, encoding a regulatory subunit of PP2A, show attenuated PPI. This PPP2R5delta reduction increases the phosphorylation of GSK3beta at serine 9, which inactivates GSK3beta, indicating that PPP2R5delta positively regulates GSK3beta activity in the brain. Consistently, genetic and pharmacological manipulations that reduce GSK3beta function attenuate PPI. The M-type potassium channel subunit, KCNQ2, is a putative GSK3beta substrate. Genetic reduction of Kcnq2 also reduces PPI, as does systemic inhibition of M-channels with linopirdine. Importantly, both the GSK3 inhibitor 3-(2,4-dichlorophenyl)-4-(1-methyl-1H-indol-3-yl)1H-pyrrole-2,5-dione (SB216763) and linopirdine reduce PPI when directly infused into the medial prefrontal cortex (mPFC). Whole-cell electrophysiological recordings of mPFC neurons show that SB216763 and linopirdine have similar effects on firing, and GSK3 inhibition occludes the effects of M-channel inhibition. These data support a previously uncharacterized mechanism by which PP2A/GSK3beta signaling regulates M-type potassium channel activity in the mPFC to modulate sensorimotor gating.
    Document Type:
    Reference
    Product Catalog Number:
    AB15452
    Product Catalog Name:
    Anti-MAP2 Antibody
  • «
  • <
  • 1
  • >
  • »