Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

neuronal


4463 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (4,103)
  • (339)
  • (7)
  • (4)
  • (2)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Altered neuronal markers following treatment with mood stabilizer and antipsychotic drugs indicate an increased likelihood of neurotransmitter release. 23429852

    Given the ability of mood stabilizers and antipsychotics to promote cell proliferation, we wanted to determine the effects of these drugs on neuronal markers previously reported to be altered in subjects with psychiatric disorders.Male Sprauge-Dawley rats were treated with vehicle (ethanol), lithium (25.5 mg per day), haloperidol (0.1 mg/kg), olanzapine (1.0 mg/kg) or a combination of lithium and either of the antipsychotic drugs for 28 days. Levels of cortical synaptic (synaptosomal associated protein-25, synaptophysin, vesicle associated protein and syntaxin) and structural (neural cell adhesion molecule and alpha-synuclein) proteins were determined in each treatment group using Western blots.Compared to the vehicle treated group; animals treated with haloperidol had greater levels of synaptosomal associated protein-25 (pless than 0.01) and neural cell adhesion molecule (pless than 0.05), those treated with olanzapine had greater levels of synaptophysin (pless than 0.01) and syntaxin (pless than 0.01). Treatment with lithium alone did not affect the levels of any of the proteins. Combining lithium and haloperidol resulted in greater levels of synaptophysin (pless than 0.01), synaptosomal associated protein-25 (pless than 0.01) and neural cell adhesion molecule (pless than 0.01). The combination of lithium and olanzapine produced greater levels of synaptophysin (pless than 0.01) and alpha-synuclein (pless than 0.05).Lithium alone had no effect on the neuronal markers. However, haloperidol and olanzapine affected different presynaptic markers. Combining lithium with olanzapine additionally increased alpha-synuclein. These drug effects need to be taken into account by future studies examining presynaptic and neuronal markers in tissue from subjects with psychiatric disorders.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The neuronal RNA-binding protein Nova-2 is implicated as the autoantigen targeted in POMA patients with dementia. 9789075

    Paraneoplastic opsoclonus myoclonus ataxia (POMA) is a neurologic disorder thought to be mediated by an autoimmune attack against onconeural disease antigens that are expressed by gynecologic or lung tumors and by neurons. One POMA disease antigen, termed Nova-1, has been identified as a neuron-specific KH-type RNA-binding protein. Nova-1 expression is restricted to specific regions of the central nervous system, primarily the hindbrain and ventral spinal cord, which correlate with the predominantly motor symptoms in POMA. However, POMA antisera recognize antigens that are widely expressed in both caudal and rostral regions of the central nervous system, and some patients develop cognitive symptoms. We have used POMA antisera to clone a cDNA encoding a second POMA disease antigen termed Nova-2. Nova-2 is closely related to Nova-1, and is expressed at high levels in neurons during development and in adulthood, and at lower levels in the adult lung. In the postnatal mouse brain, Nova-2 is expressed in a pattern that is largely reciprocal with Nova-1, including high levels of Nova-2 expression in the neocortex and hippocampus. Functional characterization of Nova-2 in RNA selection and nitrocellulose filter-binding assays reveals that Nova-2 binds RNA with high affinity and with sequence specificity that differs from Nova-1. Our results demonstrate that the immune response in POMA targets a family of highly related sequence-specific neuronal RNA-binding proteins. The expression pattern of the Nova-2 protein is likely to underlie the development of cognitive deficits in some POMA patients.
    Document Type:
    Reference
    Product Catalog Number:
    07-637
    Product Catalog Name:
    Anti-Nova-1 Antibody
  • A neuronal death model: overexpression of neuronal intermediate filament protein peripherin in PC12 cells. 22252275

    Abnormal accumulation of neuronal intermediate filament (IF) is a pathological indicator of some neurodegenerative disorders. However, the underlying neuropathological mechanisms of neuronal IF accumulation remain unclear. A stable clone established from PC12 cells overexpressing a GFP-Peripherin fusion protein (pEGFP-Peripherin) was constructed for determining the pathway involved in neurodegeneration by biochemical, cell biology, and electronic microscopy approaches. In addition, pharmacological approaches to preventing neuronal death were also examined.Results of this study showed that TUNEL positive reaction could be detected in pEGFP-Peripherin cells. Swollen mitochondria and endoplasmic reticulum (ER) were seen by electron microscopy in pEGFP-Peripherin cells on day 8 of nerve growth factor (NGF) treatment. Peripherin overexpression not only led to the formation of neuronal IF aggregate but also causes aberrant neuronal IF phosphorylation and mislocation. Western blots showed that calpain, caspase-12, caspase-9, and caspase-3 activity was upregulated. Furthermore, treatment with calpain inhibitor significantly inhibited cell death.These results suggested that the cytoplasmic neuronal IF aggregate caused by peripherin overexpression may induce aberrant neuronal IF phosphorylation and mislocation subsequently trapped and indirectly damaged mitochondria and ER. We suggested that the activation of calpain, caspase-12, caspase-9, and caspase-3 were correlated to the dysfunction of the ER and mitochondria in our pEGFP-Peripherin cell model. The present study suggested that pEGFP-Peripherin cell clones could be a neuronal death model for future studies in neuronal IFs aggregate associated neurodegeneration.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neur ... 22423107

    Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Altered neuronal density and neurotransmitter expression in the ganglionated region of Ednrb null mice: implications for Hirschsprung's disease. 23360229

    Hirschsprung's disease (HSCR) is a congenital condition in which enteric ganglia, formed from neural crest cells (NCC), are absent from the terminal bowel. Dysmotility and constipation are common features of HSCR that persist following surgical intervention. This persistence suggests that the portion of the colon that remains postoperatively is not able to support normal bowel function. To elucidate the defects that underlie this condition, we utilized a murine model of HSCR.
    Document Type:
    Reference
    Product Catalog Number:
    AB144P
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody
  • Timing of neuronal intermediate filament proteins expression in the mouse vomeronasal organ during pre- and postnatal development. An immunohistochemical study. 16179384

    Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.
    Document Type:
    Reference
    Product Catalog Number:
    AB1530
    Product Catalog Name:
    Anti-Peripherin Antibody
  • Coupling between neuronal nitric oxide synthase and glutamate receptor 6-mediated c-Jun N-terminal kinase signaling pathway via S-nitrosylation contributes to ischemia ne ... 18676085

    S-nitrosylation, as a post-translational protein modification, recently has been paid more and more attention in stroke research. S-nitrosylation regulates protein function by the mechanisms of covalent attachment that control the addition or the removal of nitric oxide (NO) from a cysteine thiol. The derivation of NO is established by the demonstration that, in cerebral neurons, NO mainly generates from neuronal nitric oxide synthase (nNOS) during the early stages of reperfusion. In the past researches, we demonstrate that global ischemia-reperfusion facilitates the activation of glutamate receptor 6 (GluR6) -mediated c-Jun N-terminal kinase (JNK) signaling pathway. The objective of this study is primarily to determine, during the early stages of reperfusion in rat four-vessel occlusion (4-VO) ischemic model, whether nNOS-derived NO affects the GluR6-mediated JNK signaling route via S-nitrosylation which is performed mainly by the biotin switch assay. Here, we show that administration of 7-nitroindazole, an inhibitor of nNOS, or ketamine, an antagonist of N-methyl-d-aspartate receptor (NMDAR), diminishes the increased S-nitrosylation of GluR6 induced by cerebral ischemia-reperfusion. In contrast, 2-amion-5,6-dihydro-6-methyl-4H-1,3-thiazine, an inhibitor of inducible NO synthase does not affect S-nitrosylation of GluR6. Moreover, treatment with sodium nitroprusside (SNP), an exogenous NO donor, increases the S-nitrosylation and phosphorylation of nNOS, leading to the attenuation of the increased S-nitrosylation of GluR6 and the assembling of GluR6* postsynaptic density protein 95 (PSD95)* mixed lineage kinase 3 (MLK3) signaling module induced by cerebral ischemia-reperfusion. The results also show that GluR6 downstream MLK3* mitogen activated protein kinase kinase 4/7* JNK signaling module and nuclear or non-nuclear apoptosis pathways are involved in the above signaling route. However, dithiothreitol (DTT) antagonizes the neuroprotection of SNP. Treatment with DTT alone, as a negative control, prevents S-nitrosylation of proteins, which indicates the existence of endogenously produced S-nitrosylation. These data suggest that GluR6 is S-nitrosylated by endogenous NO in cerebral ischemia-reperfusion, which is possibly correlated with NMDAR* PSD95* nNOS signaling module, and further activates GluR6* PSD95* MLK3 signaling module and JNK signaling pathway. In contrast, exogenous NO donor antagonizes the above action of endogenous NO generated from nNOS. Thus, our results provide the coupling of nNOS with GluR6 by S-nitrosylation during the early stages of ischemia-reperfusion, which can be a new approach for stroke therapy.
    Document Type:
    Reference
    Product Catalog Number:
    AB1555
    Product Catalog Name:
    Anti-NMDAR2A Antibody
  • Neuronal β-amyloid generation is independent of lipid raft association of β-secretase BACE1: analysis with a palmitoylation-deficient mutant. 22741101

    β-Secretase, BACE1 is a neuron-specific membrane-associated protease that cleaves amyloid precursor protein (APP) to generate β-amyloid protein (Aβ). BACE1 is partially localized in lipid rafts. We investigated whether lipid raft localization of BACE1 affects Aβ production in neurons using a palmitoylation-deficient mutant and further analyzed the relationship between palmitoylation of BACE1 and its shedding and dimerization. We initially confirmed that BACE1 is mainly palmitoylated at four C-terminal cysteine residues in stably transfected neuroblastoma cells. We found that raft localization of mutant BACE1 lacking the palmitoylation modification was markedly reduced in comparison to wild-type BACE1 in neuroblastoma cells as well as rat primary cortical neurons expressing BACE1 via recombinant adenoviruses. In primary neurons, expression of wild-type and mutant BACE1 enhanced production of Aβ from endogenous or overexpressed APP to similar extents with the β-C-terminal fragment (β-CTF) of APP mainly distributed in nonraft fractions. Similarly, β-CTF was recovered mainly in nonraft fractions of neurons expressing Swedish mutant APP only. These results show that raft association of BACE1 does not influence β-cleavage of APP and Aβ production in neurons, and support the view that BACE1 cleaves APP mainly in nonraft domains. Thus, we propose a model of neuronal Aβ generation involving mobilization of β-CTF from nonraft to raft domains. Additionally, we obtained data indicating that palmitoylation plays a role in BACE1 shedding but not dimerization.
    Document Type:
    Reference
    Product Catalog Number:
    AB5832
    Product Catalog Name:
    Anti-BACE Antibody