Millipore Sigma Vibrant Logo
 

plc


816 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (124)
  • (74)
  • (27)
  • (12)
  • (10)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. 10409180

    We have examined the changes in quantity and activity of cardiac sarcolemmal (SL) phosphoinositide-phospholipase C (PLC)-beta(1), -gamma(1), and -delta(1) in a model of congestive heart failure (CHF) secondary to large transmural myocardial infarction (MI). We also instituted a late in vivo monotherapy with imidapril, an ANG-converting enzyme (ACE) inhibitor, to test the hypothesis that its therapeutic action is associated with the functional correction of PLC isoenzymes. SL membranes were purified from the surviving left ventricle of rats in a moderate stage of CHF at 8 wk after occlusion of the left anterior descending coronary artery. SL PLC isoenzymes were examined in terms of protein mass and hydrolytic activity. CHF resulted in a striking reduction (to 6-17% of controls) of the mass and activity of gamma(1)- and delta(1)-isoforms in combination with a significant increase of both PLC beta(1) parameters. In vivo treatment with imidapril (1 mg/kg body wt, daily, initiated 4 wk after coronary occlusion) improved the contractile function and induced a partial correction of PLCs. The mass of SL phosphatidylinositol 4,5-bisphosphate and the activities of the enzymes responsible for its synthesis were significantly reduced in post-MI CHF and partially corrected by imidapril. The results indicate that profound changes in the profile of heart SL PLC-beta(1), -gamma(1), and -delta(1) occur in CHF, which could alter the complex second messenger responses of these isoforms, whereas their partial correction by imidapril may be related to the mechanism of action of this ACE inhibitor.
    Document Type:
    Reference
    Product Catalog Number:
    05-164
    Product Catalog Name:
    Anti-PLCβ-1 Antibody
  • Kaposi's sarcoma herpesvirus K15 protein contributes to virus-induced angiogenesis by recruiting PLCγ1 and activating NFAT1-dependent RCAN1 expression. 23028325

    Kaposi's Sarcoma (KS), caused by Kaposi's Sarcoma Herpesvirus (KSHV), is a highly vascularised angiogenic tumor of endothelial cells, characterized by latently KSHV-infected spindle cells and a pronounced inflammatory infiltrate. Several KSHV proteins, including LANA-1 (ORF73), vCyclin (ORF72), vGPCR (ORF74), vIL6 (ORF-K2), vCCL-1 (ORF-K6), vCCL-2 (ORF-K4) and K1 have been shown to exert effects that can lead to the proliferation and atypical differentiation of endothelial cells and/or the secretion of cytokines with angiogenic and inflammatory properties (VEGF, bFGF, IL6, IL8, GROα, and TNFβ). To investigate a role of the KSHV K15 protein in KSHV-mediated angiogenesis, we carried out a genome wide gene expression analysis on primary endothelial cells infected with KSHV wildtype (KSHVwt) and a KSHV K15 deletion mutant (KSHVΔK15). We found RCAN1/DSCR1 (Regulator of Calcineurin 1/Down Syndrome critical region 1), a cellular gene involved in angiogenesis, to be differentially expressed in KSHVwt- vs KSHVΔK15-infected cells. During physiological angiogenesis, expression of RCAN1 in endothelial cells is regulated by VEGF (vascular endothelial growth factor) through a pathway involving the activation of PLCγ1, Calcineurin and NFAT1. We found that K15 directly recruits PLCγ1, and thereby activates Calcineurin/NFAT1-dependent RCAN1 expression which results in the formation of angiogenic tubes. Primary endothelial cells infected with KSHVwt form angiogenic tubes upon activation of the lytic replication cycle. This effect is abrogated when K15 is deleted (KSHVΔK15) or silenced by an siRNA targeting the K15 expression. Our study establishes K15 as one of the KSHV proteins that contribute to KSHV-induced angiogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    07-1491
    Product Catalog Name:
    Anti-Calcineurin pan A Antibody
  • Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3K/Ca2+ -independent and PLC/Ca2+ -dependent PKC. 17581851

    We measured pharmacologically isolated GABAergic currents from layer II/III neurons of the rat auditory cortex using patch-clamp recording. Activation of muscarinic receptors by muscarine (1 microM) or oxotremorine (10 microM) decreased the amplitude of electrically evoked inhibitory postsynaptic currents to about one third of their control value. Neither miniature nor exogenously evoked GABAergic currents were altered by the presence of muscarinic agonists, indicating that the effect was spike-dependent and not mediated postsynaptically. The presence of the N- or P/Q-type Ca(2+) channel blockers omega-conotoxin GVIA (1 microM) or omega-AgaTx TK (200 nM) greatly blocked the muscarinic effect, suggesting that Ca(2+)-channels were target of the muscarinic modulation. The presence of the muscarinic M(2) receptor (M(2)R) antagonists methoctramine (5 muM) or AF-DX 116 (1 microM) blocked most of the muscarinic evoked inhibitory postsynaptic current (eIPSC) reduction, indicating that M(2)Rs were responsible for the effect, whereas the remaining component of the depression displayed M(1)R-like sensitivity. Tissue preincubation with the specific blockers of phosphatidyl-inositol-3-kinase (PI(3)K) wortmannin (200 nM), LY294002 (1 microM), or with the Ca(2+)-dependent PKC inhibitor Gö 6976 (200 nM) greatly impaired the muscarinic decrease of the eIPSC amplitude, whereas the remaining component was sensitive to preincubation in the phospholipase C blocker U73122 (10 microM). We conclude that acetylcholine release enhances the excitability of the auditory cortex by decreasing the release of GABA by inhibiting axonal V-dependent Ca(2+) channels, mostly through activation of presynaptic M(2)Rs/PI(3)K/Ca(2+)-independent PKC pathway and-to a smaller extent-by the activation of M(1)/PLC/Ca(2+)-dependent PKC.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Differential regulation of proliferation and neuronal differentiation in adult rat spinal cord neural stem/progenitors by ERK1/2, Akt, and PLCγ. 23986655

    Proliferation of endogenous neural stem/progenitor cells (NSPCs) has been identified in both normal and injured adult mammalian spinal cord. Yet the signaling mechanisms underlying the regulation of adult spinal cord NSPCs proliferation and commitment toward a neuronal lineage remain undefined. In this study, the role of three growth factor-mediated signaling pathways in proliferation and neuronal differentiation was examined. Adult spinal cord NSPCs were enriched in the presence of fibroblast growth factor 2 (FGF2). We observed an increase in the number of cells expressing the microtubule-associated protein 2 (MAP2) over time, indicating neuronal differentiation in the culture. Inhibition of the mitogen-activated protein kinase or extracellular signal-regulated kinase (ERK) kinase 1 and 2/ERK 1 and 2 (MEK/ERK1/2) or the phosphoinositide 3-kinase (PI3K)/Akt pathways suppressed active proliferation in adult spinal cord NSPC cultures; whereas neuronal differentiation was negatively affected only when the ERK1/2 pathway was inhibited. Inhibition of the phospholipase Cγ (PLCγ) pathway did not affect proliferation or neuronal differentiation. Finally, we demonstrated that the blockade of either the ERK1/2 or PLCγ signaling pathways reduced neurite branching of MAP2+ cells derived from the NSPC cultures. Many of the MAP2+ cells expressed synaptophysin and had a glutamatergic phenotype, indicating that over time adult spinal cord NSPCs had differentiated into mostly glutamatergic neurons. Our work provides new information regarding the contribution of these pathways to the proliferation and neuronal differentiation of NSPCs derived from adult spinal cord cultures, and emphasizes that the contribution of these pathways is dependent on the origin of the NSPCs.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • PLC-γ and PI3K link cytokines to ERK activation in hematopoietic cells with normal and oncogenic Kras. 24300897

    Oncogenic K-Ras proteins, such as K-Ras(G12D), accumulate in the active, guanosine triphosphate (GTP)-bound conformation and stimulate signaling through effector kinases. The presence of the K-Ras(G12D) oncoprotein at a similar abundance to that of endogenous wild-type K-Ras results in only minimal phosphorylation and activation of the canonical Raf-mitogen-activated or extracellular signal-regulated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) signaling cascades in primary hematopoietic cells, and these pathways remain dependent on growth factors for efficient activation. We showed that phospholipase C-γ (PLC-γ), PI3K, and their generated second messengers link activated cytokine receptors to Ras and ERK signaling in differentiated bone marrow cells and in a cell population enriched for leukemia stem cells. Cells expressing endogenous oncogenic K-Ras(G12D) remained dependent on the second messenger diacylglycerol for the efficient activation of Ras-ERK signaling. These data raise the unexpected possibility of therapeutically targeting proteins that function upstream of oncogenic Ras in cancer.
    Document Type:
    Reference
    Product Catalog Number:
    05-516
    Product Catalog Name:
    Anti-Ras Antibody, clone RAS10
  • Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. 20858858

    Hyperactivation of the transcription factor Stat5 leads to various leukemias. Stat5 activity is regulated by the protein phosphatase SHP-1 in a phospholipase C (PLC)-?3-dependent manner. Thus, PLC-?3-deficient mice develop myeloproliferative neoplasm, like Lyn (Src family kinase)- deficient mice. Here we show that Lyn/PLC-?3 doubly deficient lyn(-/-);PLC-?3(-/-) mice develop a Stat5-dependent, fatal myelodysplastic/myeloproliferative neoplasm, similar to human chronic myelomonocytic leukemia (CMML). In hematopoietic stem cells of lyn(-/-);PLC-?3(-/-) mice that cause the CMML-like disease, phosphorylation of SHP-1 at Tyr(536) and Tyr(564) is abrogated, resulting in reduced phosphatase activity and constitutive activation of Stat5. Furthermore, SHP-1 phosphorylation at Tyr(564) by Lyn is indispensable for maximal phosphatase activity and for suppression of the CMML-like disease in these mice. On the other hand, Tyr(536) in SHP-1 can be phosphorylated by Lyn and another kinase(s) and is necessary for efficient interaction with Stat5. Therefore, we identify a novel Lyn/PLC-?3-mediated regulatory mechanism of SHP-1 and Stat5 activities.
    Document Type:
    Reference
    Product Catalog Number:
    17-125
    Product Catalog Name:
    PTP Assay Kit 1