Millipore Sigma Vibrant Logo
 

proline


318 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (171)
  • (75)
  • (1)
  • (1)
  • (1)

Application Type

  • (1)

Field of Activity

  • (1)

Sample

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy. 24058604

    The intracellular concentration of chloride ([Cl(-)]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl(-)]i for its activation of Na-K-2 Cl(-)co-transporters (NKCC) and inhibition of K-Cl(-)co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However, it remains unclear whether SPAK modulates [Cl(-)]i via NKCC1 or KCC2 in the brain. Also, there are no data clearly characterizing SPAK expression in cortical or hippocampal neurons or confirming an association between SPAK and epilepsy. In the present study, we examined SPAK expression and co-expression with NKCC1 and KCC2 in the hippocampal neurons of mice with PISE, and we investigated alterations in SPAK expression in the hippocampus of such mice. Significant increases in SPAK mRNA and protein levels were detected during various stages of PISE in the PISE mice in comparison to levels in age-matched sham (control) and blank treatment (control) mice. SPAK and NKCC1 expression increased in vitro, while KCC2 was down-regulated in hippocampal neurons following hypoxic conditioning. However, SPAK overexpression did not influence the expression levels of NKCC1 or KCC2. Using co-immunoprecipitation, we determined that the intensity of interaction between SPAK and NKCC1 and between SPAK and KCC2 increased markedly after oxygen-deprivation, whereas SPAK overexpression strengthened the relationships. The [Cl(-)]i of hippocampal neurons changed in a corresponding manner under the different conditions. Our data suggests that SPAK is involved in the plasticity of GABA signaling function in acquired epilepsy via adjustment of [Cl(-)]i in hippocampal neurons.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The epidermal growth factor receptor (EGFR) and proline rich tyrosine kinase 2 (PYK2) are involved in tissue factor dependent factor VIIa signalling in HaCaT cells. 15213840

    Binding of the coagulation protease factor VIIa to its receptor Tissue Factor (TF) induces intracellular signals in several cell types including HaCaT keratinocytes. TF belongs to the cytokine receptor family, but is most likely not alone in transferring the complete TF/FVIIa signal over the plasma membrane. The protease activated receptor PAR2 is involved in factor VIIa and factor Xa signal transduction. Our results indicate that the epidermal growth factor receptor (EGFR) and the proline rich tyrosine kinase 2 (PYK2) participate in TF/FVIIa signalling as formation of the TF/FVIIa complex increased the phosphorylation of these proteins. Both FVIIa protease activity and available TF were necessary for generation of the signal. Increased tyrosine phosphorylation of the EGFR was observed following TF/FVIIa complex formation on the cell surface. The EGFR kinase inhibitor tyrphostin AG1478 abrogated the TF/FVIIa-complex induced MAP kinase activation and mRNA increase of egr-1, heparin-binding EGF, and interleukin-8 following FVIIa addition. Using specific antibodies, increased phosphorylation of PYK2 tyrosine residues 402 and 580 was observed. The first site is the major autophosphorylation site and the docking site for Src family kinases. The second site is important for the kinase activity. The Src family kinase Yes and the tyrosine phosphatase SHP-2 were detected in immunoprecipitates using either anti-PYK2 or anti-EGFR antibodies. Their coprecipitation with EGFR increased in the presence of FVIIa. Moreover, the coprecipitation of EGFR and PYK2 increased with FVIIa stimulation. Together, these data suggest that EGFR, PYK2, Yes, and SHP-2 are involved in transduction of the TF/FVIIa signal possibly via transactivation of the EGF receptor.
    Document Type:
    Reference
    Product Catalog Number:
    06-514
  • Sequence-specific and phosphorylation-dependent proline isomerization: a potential mitotic regulatory mechanism. 9395400

    Pin1 is an essential and conserved mitotic peptidyl-prolyl isomerase (PPIase) that is distinct from members of two other families of conventional PPIases, cyclophilins and FKBPs (FK-506 binding proteins). In response to their phosphorylation during mitosis, Pin1 binds and regulates members of a highly conserved set of proteins that overlaps with antigens recognized by the mitosis-specific monoclonal antibody MPM-2. Pin1 is here shown to be a phosphorylation-dependent PPIase that specifically recognizes the phosphoserine-proline or phosphothreonine-proline bonds present in mitotic phosphoproteins. Both Pin1 and MPM-2 selected similar phosphorylated serine-proline-containing peptides, providing the basis for the specific interaction between Pin1 and MPM-2 antigens. Pin1 preferentially isomerized proline residues preceded by phosphorylated serine or threonine with up to 1300-fold selectivity compared with unphosphorylated peptides. Pin1 may thus regulate mitotic progression by catalyzing sequence-specific and phosphorylation-dependent proline isomerization.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The TLR7/8 agonist CL097 primes N-formyl-methionyl-leucyl-phenylalanine-stimulated NADPH oxidase activation in human neutrophils: critical role of p47phox phosphorylation ... 23002436

    Superoxide anion production by the neutrophil NADPH oxidase plays a key role in host defense; however, excessive superoxide production is believed to participate to inflammatory reactions. Neutrophils express several TLR that recognize a variety of microbial motifs or agonists. The interaction between TLR and their agonists is believed to help neutrophils to recognize and eliminate the pathogen. However, the effects of some TLR agonists on the NADPH oxidase activation and the mechanisms controlling these effects have not been elucidated. In this study, we show that the TLR7/8 agonist CL097 by itself did not induce NADPH oxidase activation in human neutrophils, but induced a dramatic increase of fMLF-stimulated activation. Interestingly, CL097 induced cytochrome b558 translocation to the plasma membrane and the phosphorylation of the NADPH oxidase cytosolic component p47phox on Ser(345), Ser(328), and Ser(315). Phosphorylation of Ser(328) and Ser(315) was significantly increased in CL097-primed and fMLF-stimulated neutrophils. Phosphorylation of Ser(345), Ser(328), and Ser(315) was decreased by inhibitors of p38 MAPK and the ERK1/2 pathway. Phosphorylation of Ser(328) was decreased by a protein kinase C inhibitor. Genistein, a broad-range protein tyrosine kinase inhibitor, inhibited the phosphorylation of these serines. Our results also show that CL097 induced proline isomerase 1 (Pin1) activation and that juglone, a Pin1 inhibitor, inhibited CL097-mediated priming of fMLF-induced p47phox phosphorylation and superoxide production. These results show that the TLR7/8 agonist CL097 induces hyperactivation of the NADPH oxidase by stimulating the phosphorylation of p47phox on selective sites in human neutrophils and suggest that p38 MAPK, ERK1/2, protein kinase C, and Pin1 control this process.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Proline-glutamate interactions in the CNS. 9075263

    1. Crude synaptosomes (P2) and synaptosomal membranes were prepared from normal C57/B110 mouse brains and Wistar rats respectively. 2. [3H]Pro binding to mouse brain synaptic membranes was examined in the presence of competitive NMDA antagonist, MK-801, or HA-966. Conversely, the effects of l-proline on [3H]MK-801 binding were also probed. The effects of l-proline on glutamate-medicated [Ca+2]i levels were tested. 3. The authors could not detect any effect of proline on glutamate-mediated [CA+2]i levels using FURA-2 in synaptosomes or neuroblastoma cells. 4. NMDA competitive antagonists, AP-7, CPP, and CGS 19755 inhibit [3H]Pro binding to mouse brain synaptic membranes. 5. MK-801, a NMDA channel blocker, also inhibits [3H]Pro binding, but 200 mM proline is incapable of inhibiting [3H]MK-801 binding. 6. HA-966, a glycine site partial agonist inhibits [3H]Pro binding. Proline has modest effects on [3H]glycine binding.
    Document Type:
    Reference
    Product Catalog Number:
    03-100
    Product Catalog Name:
    RIPAb+™ hnRNP M1-M4
  • Proline-hydroxylated hypoxia-inducible factor 1α (HIF-1α) upregulation in human tumours. 24563687

    The stabilisation of HIF-α is central to the transcriptional response of animals to hypoxia, regulating the expression of hundreds of genes including those involved in angiogenesis, metabolism and metastasis. HIF-α is degraded under normoxic conditions by proline hydroxylation, which allows for recognition and ubiquitination by the von-Hippel-Lindau (VHL) E3 ligase complex. The aim of our study was to investigate the posttranslational modification of HIF-1α in tumours, to assess whether there are additional mechanisms besides reduced hydroxylation leading to stability. To this end we optimised antibodies against the proline-hydroxylated forms of HIF-1α for use in formalin fixed paraffin embedded (FFPE) immunohistochemistry to assess effects in tumour cells in vivo. We found that HIF-1α proline-hydroxylated at both VHL binding sites (Pro402 and Pro564), was present in hypoxic regions of a wide range of tumours, tumour xenografts and in moderately hypoxic cells in vitro. Staining for hydroxylated HIF-1α can identify a subset of breast cancer patients with poorer prognosis and may be a better marker than total HIF-1α levels. The expression of unhydroxylated HIF-1α positively correlates with VHL in breast cancer suggesting that VHL may be rate-limiting for HIF degradation. Our conclusions are that the degradation of proline-hydroxylated HIF-1α may be rate-limited in tumours and therefore provides new insights into mechanisms of HIF upregulation. Persistence of proline-hydroxylated HIF-1α in perinecrotic areas suggests there is adequate oxygen to support prolyl hydroxylase domain (PHD) activity and proline-hydroxylated HIF-1α may be the predominant form associated with the poorer prognosis that higher levels of HIF-1α confer.
    Document Type:
    Reference
    Product Catalog Number:
    07-1585
  • Proline-rich tyrosine kinase 2 and Rac activation by chemokine and integrin receptors controls NK cell transendothelial migration. 12626562

    Protein tyrosine kinase activation is an important requisite for leukocyte migration. Herein we demonstrate that NK cell binding to endothelium activates proline-rich tyrosine kinase 2 (Pyk-2) and the small GTP binding protein Rac that are coupled to integrin and chemokine receptors. Chemokine-mediated, but not integrin-mediated, Pyk-2 and Rac activation was sensitive to pretreatment of NK cells with pertussis toxin, a pharmacological inhibitor of G(i) protein-coupled receptors. Both Pyk-2 and Rac are functionally involved in chemokine-induced NK cell migration through endothelium or ICAM-1 or VCAM-1 adhesive proteins, as shown by the use of recombinant vaccinia viruses encoding dominant negative mutants of Pyk-2 and Rac. Moreover, we found that Pyk-2 is associated with the Rac guanine nucleotide exchange factor Vav, which undergoes tyrosine phosphorylation upon integrin triggering. Finally, we provide direct evidence for the involvement of Pyk-2 in the control of both chemokine- and integrin-mediated Rac activation. Collectively, our results indicate that Pyk-2 acts as a receptor-proximal link between integrin and chemokine receptor signaling, and the Pyk-2/Rac pathway plays a pivotal role in the control of NK cell transendothelial migration.
    Document Type:
    Reference
    Product Catalog Number:
    05-389
    Product Catalog Name:
    Anti-Rac1 Antibody, clone 23A8
  • Alanine-170 and proline-172 are critical determinants for extracellular CD20 epitopes; heterogeneity in the fine specificity of CD20 monoclonal antibodies is defined by a ... 11964291

    In vivo ablation of malignant B cells can be achieved using antibodies directed against the CD20 antigen. Fine specificity differences among CD20 monoclonal antibodies (mAbs) are assumed not to be a factor in determining their efficacy because evidence from antibody-blocking studies indicates limited epitope diversity with only 2 overlapping extracellular CD20 epitopes. However, in this report a high degree of heterogeneity among antihuman CD20 mAbs is demonstrated. Mutation of alanine and proline at positions 170 and 172 (AxP) (single-letter amino acid codes; x indicates the identical amino acid at the same position in the murine and human CD20 sequences) in human CD20 abrogated the binding of all CD20 mAbs tested. Introduction of AxP into the equivalent positions in the murine sequence, which is not otherwise recognized by antihuman CD20 mAbs, fully reconstituted the epitope recognized by B1, the prototypic anti-CD20 mAb. 2H7, a mAb previously thought to recognize the same epitope as B1, did not recognize the murine AxP mutant. Reconstitution of the 2H7 epitope was achieved with additional mutations replacing VDxxD in the murine sequence for INxxN (positions 162-166 in the human sequence). The integrity of the 2H7 epitope, unlike that of B1, further depends on the maintenance of CD20 in an oligomeric complex. The majority of 16 antihuman CD20 mAbs tested, including rituximab, bound to murine CD20 containing the AxP mutations. Heterogeneity in the fine specificity of these antibodies was indicated by marked differences in their ability to induce homotypic cellular aggregation and translocation of CD20 to a detergent-insoluble membrane compartment previously identified as lipid rafts.
    Document Type:
    Reference
    Product Catalog Number:
    MABF250