Millipore Sigma Vibrant Logo
 

transcription+factor+assay


503 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (378)
  • (76)
  • (5)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. 25884514

    The type I insulin-like growth factor receptor (IGF-IR) tyrosine kinase promotes the survival of an aggressive subtype of T-cell lymphoma by interacting with nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) oncogenic protein. NPM-ALK(+) T-cell lymphoma exhibits much higher levels of IGF-IR than normal human T lymphocytes. The mechanisms underlying increased expression of IGF-IR in this lymphoma are not known. We hypothesized that upregulation of IGF-IR could be attributed to previously unrecognized defects that inherently exist in the transcriptional machinery in NPM-ALK(+) T-cell lymphoma.Screening studies showed substantially lower levels of the transcription factors Ikaros isoform 1 (Ik-1) and myeloid zinc finger 1 (MZF1) in NPM-ALK(+) T-cell lymphoma cell lines and primary tumor tissues from patients than in human T lymphocytes. A luciferase assay supported that Ik-1 and MZF1 suppress IGF-IR gene promoter. Furthermore, ChIP assay showed that these transcription factors bind specific sites located within the IGF-IR gene promoter. Forced expression of Ik-1 or MZF1 in the lymphoma cells decreased IGF-IR mRNA and protein. This decrease was associated with downregulation of pIGF-IR, and the phosphorylation of its interacting proteins IRS-1, AKT, and NPM-ALK. In addition, overexpression of Ik-1 and MZF1 decreased the viability, proliferation, migration, and anchorage-independent colony formation of the lymphoma cells.Our results provide novel evidence that the aberrant decreases in Ik-1 and MZF1 contribute significantly to the pathogenesis of NPM-ALK(+) T-cell lymphoma through the upregulation of IGF-IR expression. These findings could be exploited to devise new strategies to eradicate this lymphoma.
    Document Type:
    Reference
    Product Catalog Number:
    05-172
    Product Catalog Name:
    Anti-IGF-I Antibody, clone Sm1.2
  • Brn-3a transcription factor blocks p53-mediated activation of proapoptotic target genes Noxa and Bax in vitro and in vivo to determine cell fate. 15598651

    The Brn-3a POU transcription factor is associated with survival and the differentiation of sensory neuronal cells during development. Brn-3a mediates its effects either by the direct regulation of target genes or indirectly upon interaction with proteins such as p53. Brn-3a differentially regulates p53-mediated gene expression and modifies its effect on cell fate. Here we show that, like Bax, Brn-3a antagonizes p53-mediated transcription of another proapoptotic target, Noxa, significantly reducing transactivation of the Noxa promoter by p53. This effect requires the p53 binding site, and electrophoretic mobility shift assay studies suggest that Brn-3a is associated with p53 when it is bound to its site in the Noxa promoter. The wild type but not the mutant promoter can be immunoprecipitated with Brn-3a in chromatin immunoprecipitation assays. Thus, Brn-3a may act by preventing the recruitment of cofactors required for p53 to transactivate this promoter. The co-expression of Brn-3a and p53 results in decreased endogenous Noxa protein in the neuronal cell line, ND7, suggesting a direct functional effect of this interaction. Moreover, there is a significant elevation of both proapoptotic Bax and Noxa proteins in sensory neuronal tissue taken from Brn-3a-/- embryos during development, compared with wild type controls. Striking changes occurred at embryonic day 14.5, a time that precedes a significant loss of specific neurons in the mutant embryos, but not at embryonic day 16.5 when Brn-3a-expressing cells are already lost by apoptosis. Therefore, the lack of antagonism by Brn-3a on activation of proapoptotic p53 target genes may contribute to the increased apoptosis seen in the Brn-3a-/- embryos. These results support a crucial role for Brn-3a in determining the pathway taken by p53 when co-expressed during development and thus in controlling the fate of these cells.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1585
    Product Catalog Name:
    Anti-Brn-3a Antibody, POU-domain protein, clone 5A3.2
  • Transcription of Tnfaip3 is regulated by NF-κB and p38 via C/EBPβ in activated macrophages. 24023826

    Macrophages play a pivotal role in the immune system through recognition and elimination of microbial pathogens. Toll-like receptors (TLRs) on macrophages interact with microbial substances and initiate signal transduction through intracellular adapters. TLR4, which recognizes the lipopolysaccharides (LPS) on Gram-positive and Gram-negative bacteria, triggers downstream signaling mediators and eventually activates IκB kinase (IKK) complex and mitogen-activated protein kinases (MAPKs) such as p38. Previous reports revealed that, in addition to NF-κB, a core transcription factor of the innate immune response, the induction of some LPS-induced genes in macrophages required another transcription factor whose activity depends on p38. However, these additional transcription factors remain to be identified. In order to identify p38-activated transcription factors that cooperate with NF-κB in response to LPS stimulation, microarrays were used to identify genes regulated by both NF-κB and p38 using wild-type, IKK-depleted, and p38 inhibitor-treated mouse bone marrow-derived macrophages (BMDMs). In silico analysis of transcription factor binding sites was used to predict the potential synergistic transcription factors from the co-expressed genes. Among these genes, NF-κB and C/EBPβ, a p38 downstream transcription factor, were predicted to co-regulate genes in LPS-stimulated BMDMs. Based on the subsequent results of a chromatin immunoprecipitation assay and TNFAIP3 expression in C/EBPβ-ablated macrophages, we demonstrated that Tnfaip3 is regulated by both NF-κB and p38-dependent C/EBPβ. These results identify a novel regulatory mechanism in TLR4-mediated innate immunity.
    Document Type:
    Reference
    Product Catalog Number:
    05-535
    Product Catalog Name:
    Anti-IKKβ Antibody, clone 10AG2
  • Transcription of the transforming growth factor beta activating integrin beta8 subunit is regulated by SP3, AP-1, and the p38 pathway. 20519498

    Integrin alphavbeta8 is a critical regulator of transforming growth factor beta activation in vasculogenesis during development, immune regulation, and endothelial/epithelial-mesenchymal homeostasis. Recent studies have suggested roles for integrin beta8 in the pathogenesis of chronic obstructive pulmonary disease, brain arteriovenous malformations, and select cancers (Araya, J., Cambier, S., Markovics, J. A., Wolters, P., Jablons, D., Hill, A., Finkbeiner, W., Jones, K., Broaddus, V. C., Sheppard, D., Barzcak, A., Xiao, Y., Erle, D. J., and Nishimura, S. L. (2007) J. Clin. Invest. 117, 3551-3562; Su, H., Kim, H., Pawlikowska, L., Kitamura, H., Shen, F., Cambier, S., Markovics, J., Lawton, M. T., Sidney, S., Bollen, A. W., Kwok, P. Y., Reichardt, L., Young, W. L., Yang, G. Y., and Nishimura, S. L. (2010) Am. J. Pathol. 176, 1018-1027; Culhane, A. C., and Quackenbush, J. (2009) Cancer Res. 69, 7480-7485; Cambier, S., Mu, D. Z., O'Connell, D., Boylen, K., Travis, W., Liu, W. H., Broaddus, V. C., and Nishimura, S. L. (2000) Cancer Res. 60, 7084-7093). Here we report the first identification and characterization of the promoter for ITGB8. We show that a SP binding site and a cyclic AMP response element (CRE) in the ITGB8 core promoter are required for its expression and that Sp1, Sp3, and several AP-1 transcription factors form a complex that binds to these sites in a p38-dependent manner. Furthermore, we demonstrate the requirement for Sp3, ATF-2, and p38 for the transcription and protein expression of integrin beta8. Additionally, reduction of SP3 or inhibition of p38 blocks alphavbeta8-mediated transforming growth factor beta activation. These results place integrin beta8 expression and activity under the control of ubiquitous transcription factors in a stress-activated and pro-inflammatory pathway.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Transcription factor Nrf2/MafK regulates rat placental glutathione S-transferase gene during hepatocarcinogenesis. 14960151

    The rat GST-P (placental glutathione S-transferase), a phase II detoxifying enzyme, is not expressed in normal liver cells, but is highly and specifically induced during early hepatocarcinogenesis as well as in hepatocellular carcinoma cells. Results of previous studies indicated that GST-P gene activation was mainly controlled by an enhancer element, GPE1 (GST-P enhancer 1), but the specific activation mechanism of the GST-P gene was not fully understood [Morimura, Suzuki, Hochi, Yuki, Nomura, Kitagawa, Nagatsu, Imagawa and Muramatsu (1993) Proc. Natl. Acad. Sci. U.S.A. 90, 2065-2068; Suzuki, Imagawa, Hirabayashi, Yuki, Hisatake, Nomura, Kitagawa and Muramatsu (1995) Cancer Res. 55, 2651-2655]. In the present study, we investigate the transcription factor Nrf2/MafK heterodimer (where Nrf2 stands for NF-E2 p45-related factor 2) as an activator of the GST-P gene through the action of GPE1 during hepatocarcinogenesis. Electrophoretic mobility-shift assay and footprinting analysis with wild-type GPE1 and GPE1 point mutants showed that the Nrf2/MafK heterodimer specifically bound GPE1. Reporter transfection assays indicated that Nrf2 strongly stimulated GST-P gene expression in mouse F9 embryonal carcinoma cells and H4IIE rat hepatoma cells. Northern-blot analysis indicated that GST-P and Nrf2 mRNA increased in parallel with development of precancerous lesions and hepatocellular carcinoma. Keap1 (Kelch-like ECH-associated protein 1), an inhibitory factor of Nrf2, decreased the activation of GPE1 by Nrf2 and this suppression was restored after treatment with electrophilic compounds. GST-P mRNA expression in H4IIE cells was induced by electrophilic compounds, as was the expression of mRNAs of other phase II detoxifying enzymes. Chromatin immunoprecipitation analyses showed that antibodies both against Nrf2 and against MafK precipitated GPE1 from the chromatin of the pre-neoplastic hepatocytes and rat hepatoma cells (H4IIE and dRLh84), but not from normal hepatocytes. These results indicate that the Nrf2/MafK heterodimer regulates GST-P gene expression during early hepatocarcinogenesis and in hepatoma cells.
    Document Type:
    Reference
    Product Catalog Number:
    ABE1928
    Product Catalog Name:
    Anti-MafK/Nfe2u Antibody
  • The POU homeodomain transcription factor POUM2 and broad complex isoform 2 transcription factor induced by 20-hydroxyecdysone collaboratively regulate vitellogenin gene e ... 28621470

    Vitellogenin (Vg) is a source of nutrition for embryo development. Our previous study showed that the silkworm (Bombyx mori) transcription factor broad complex isoform 2 (BmBrC-Z2) regulates gene expression of the Vg gene (BmVg) by induction with 20-hydroxyecdysone (20E). However, the mechanism by which 20E regulates BmVg expression was not clarified. In this study, cell transfection experiments showed that the BmVg promoter containing the POU homeodomain transcription factor POUM2 (POUM2) and BrC-Z2 cis-response elements (CREs) showed a more significant response to 20E than that harbouring only the BrC-Z2 or POUM2 CRE. An electrophoretic mobility shift assay and chromatin immunoprecipitation assay showed that BmPOUM2 could bind to the POUM2 CRE of the BmVg promoter. Over-expression of BmPOUM2 and BmBrC-Z2 in B. mori embryo-derived cell line (BmE) could enhance the activity of the BmVg promoter carrying both the POUM2 and BrC-Z2 CREs following 20E induction. Quantitative PCR and immunofluorescence histochemistry showed that the expression pattern and tissue localization of BmPOUM2 correspond to those of BmVg. Glutathione S-transferase pull-down and co-immunoprecipitation assays confirmed that BmPOUM2 interacts only with BmBrC-Z2 to regulate BmVg expression. Down-regulation of BmPOUM2 in female silkworm by RNA interference significantly reduced BmVg expression, leading to abnormal egg formation. In summary, these results indicate that BmPOUM2 binds only to BmBrC-Z2 to collaboratively regulate BmVg expression by 20E induction to control vitellogenesis and egg formation in the silkworm. Moreover, these findings suggest that homeodomain protein POUM2 plays a novel role in regulating insect vitellogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Transcription factor Sp1 regulates basal transcription of the human DRG2 gene. 21296692

    Developmentally regulated GTP-binding protein 2 (DRG2) is an evolutionarily conserved GTP-binding protein. DRG2 mRNA expression has been confirmed in many animal and human tissues. DRG2 is thought to play an essential role in the control of cell growth and differentiation. However, transcriptional regulation of DRG2 is largely unknown. To investigate the mechanisms controlling DRG2 expression, we cloned 1509bp of the 5'-flanking sequence of this gene. Deletion analysis showed that the region between -113 and -70 is essential for the basal level expression of the DRG2 gene in K562 human erythroleukemic cells. Mutation of a putative stimulating protein 1 (Sp1) regulatory site located at position -108 resulted in a significant decline in DRG2 promoter activity. Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis revealed that Sp1 binds to this site. Knockdown of Sp1 expression using siRNA inhibited the promoter activation as well as the endogenous DRG2 transcriptional level. Taken together, these results demonstrate that basal expression level of DRG2 is regulated by the Sp1 transcription factor.
    Document Type:
    Reference
    Product Catalog Number:
    12-370
    Product Catalog Name:
    Normal Rabbit IgG
  • Transcription factors regulate GPR91-mediated expression of VEGF in hypoxia-induced retinopathy. 28374767

    Hypoxia is the most important factor in the pathogenesis of diabetic retinopathy (DR). Our previous studies demonstrated that G protein-coupled receptor 91(GPR91) participated in the regulation of vascular endothelial growth factor (VEGF) secretion in DR. The present study induced OIR model in newborn rats using exposure to alternating 24-hour episodes of 50% and 12% oxygen for 14 days. Treatment with GPR91 shRNA attenuated the retinal avascular area, abnormal neovascularization and pericyte loss. Western blot and qRT-PCR demonstrated that CoCl2 exposure promoted VEGF expression and secretion, activated the ERK1/2 signaling pathways and upregulated C/EBP and AP-1. Knockdown of GPR91 inhibited ERK1/2 activity. GPR91 siRNA transduction and the ERK1/2 inhibitor U0126 inhibited the increases in C/EBP β, C/EBP δ, c-Fos and HIF-1α. Luciferase reporter assays and a chromatin immunoprecipitation (ChIP) assay demonstrated that C/EBP β and c-Fos bound the functional transcriptional factor binding site in the region of the VEGF promoter, but not C/EBP δ. Knockdown of C/EBP β and c-Fos using RNAi reduced VEGF expression. Our data suggest that activation of the GPR91-ERK1/2-C/EBP β (c-Fos, HIF-1α) signaling pathway plays a tonic role in regulating VEGF transcription in rat retinal ganglion cells.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Contribution of transcription factor, SP1, to the promotion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma. 25060396

    Ovarian clear cell carcinoma (OCCC) is a worst histological subtype than other ovarian malignant tumor. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a promising target for ovarian cancer therapy. The aims of this study were to validate the efficacy of HB-EGF-targeted therapy for OCCC and to identify the transcription factor that contributed to the induction of HB-EGF by SN38 treatment in OCCC cells. HB-EGF was highly expressed in OCCC cells, and an increase of HB-EGF was induced by SN38 which had only antitumor effect among conventional anticancer agents on OCCC. A specific inhibitor of HB-EGF, a cross-reacting material 197 (CRM197), led to a synergistic increase in the number of apoptotic OCCC cells with the treatment of SN38. The luciferase assay with 5'-deletion promoter constructs identified a GC-rich element between -125 and -178 (the distal transcription start site was denoted +1) as a cis-regulatory region, and the treatment of SN38 induced luciferase activity in this region. An in silico and chromatin immunoprecipitation analysis estimated that SP1 bound to the cis-regulatory region of HB-EGF in OCCC cells. Real-time PCR and cell viability assays showed that the transfection of a small interfering RNA targeting SP1 suppressed the expression of HB-EGF induced by SN38, resulting in the enhanced sensitivity of SN38. Taken together, these results indicate that induction of HB-EGF expression contributed to defense mechanism against treatment of SN38 through the transcriptional activity of SP1 in OCCC cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Analysis of transcription factor interactions in osteoblasts using competitive chromatin immunoprecipitation. 18263612

    Chromatin immunoprecipitation (ChIP) is a widely used technique for quantifying protein-DNA interactions in living cells. This method commonly uses fixed (crosslinked) chromatin that is fragmented by sonication (X-ChIP). We developed a simple new ChIP procedure for the immunoprecipitation of sonicated chromatin isolated from osteoblasts in the absence of crosslinking (N-ChIP). The use of noncrosslinked chromatin allowed development of a new modification of the ChIP assay: the combination of N-ChIP and competition with double-stranded oligonucleotides containing specific binding sites for individual transcription factors (Competitive N-ChIP). Using this approach, we were able to discriminate between individual binding sites for the Runx2 transcription factor in the osteocalcin and bone sialoprotein genes that cannot be resolved by traditional X-ChIP. N-ChIP assays were also able to detect several other types of chromatin interactions including those with Dlx homeodomain factors and nuclear proteins such as Sin3a that lack an intrinsic DNA-binding motif and, therefore, bind to chromatin via interactions with other proteins.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple