Millipore Sigma Vibrant Logo
 

wnt


740 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (548)
  • (75)
  • (2)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Upon Wnt stimulation, Rac1 activation requires Rac1 and Vav2 binding to p120-catenin. 22946057

    A role for Rac1 GTPase in canonical Wnt signaling has recently been demonstrated, showing that it is required for β-catenin translocation to the nucleus. In this study, we investigated the mechanism of Rac1 stimulation by Wnt. Upregulation of Rac1 activity by Wnt3a temporally correlated with enhanced p120-catenin binding to Rac1 and Vav2. Vav2 and Rac1 association with p120-catenin was modulated by phosphorylation of this protein, which was stimulated upon serine/threonine phosphorylation by CK1 and inhibited by tyrosine phosphorylation by Src or Fyn. Acting on these two post-translational modifications, Wnt3a induced the release of p120-catenin from E-cadherin, enabled the interaction of p120-catenin with Vav2 and Rac1, and facilitated Rac1 activation by Vav2. Given that p120-catenin depletion disrupts gastrulation in Xenopus, we analyzed p120-catenin mutants for their ability to rescue this phenotype. In contrast to the wild-type protein or other controls, p120-catenin point mutants that were deficient in the release from E-cadherin or in Vav2 or Rac1 binding failed to rescue p120-catenin depletion. Collectively, these results indicate that binding of p120-catenin to Vav2 and Rac1 is required for the activation of this GTPase upon Wnt signaling.
    Document Type:
    Reference
    Product Catalog Number:
    07-175
    Product Catalog Name:
    Anti-phospho-JNK (Thr183/Tyr185, Thr221/Tyr223) Antibody
  • The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer ... 20837484

    PTK7 is an essential component of the Wnt/planar cell polarity (PCP) pathway. We provide evidence that the Wnt/PCP pathway converges with pericellular proteolysis in both normal development and cancer. Here, we demonstrate that membrane type-1 matrix metalloproteinase (MT1-MMP), a key proinvasive proteinase, functions as a principal sheddase of PTK7. MT1-MMP directly cleaves the exposed PKP(621)↓LI sequence of the seventh Ig-like domain of the full-length membrane PTK7 and generates, as a result, an N-terminal, soluble PTK7 fragment (sPTK7). The enforced expression of membrane PTK7 in cancer cells leads to the actin cytoskeleton reorganization and the inhibition of cell invasion. MT1-MMP silencing and the analysis of the uncleavable L622D PTK7 mutant confirm the significance of MT1-MMP proteolysis of PTK7 in cell functions. Our data also demonstrate that a fine balance between the metalloproteinase activity and PTK7 levels is required for normal development of zebrafish (Danio rerio). Aberration of this balance by the proteinase inhibition or PTK7 silencing results in the PCP-dependent convergent extension defects in the zebrafish. Overall, our data suggest that the MT1-MMP-PTK7 axis plays an important role in both cancer cell invasion and normal embryogenesis in vertebrates. Further insight into these novel mechanisms may promote understanding of directional cell motility and lead to the identification of therapeutics to treat PCP-related developmental disorders and malignancy.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1767
    Product Catalog Name:
    Anti-Human MT1-MMP catalytic domain Antibody, clone 3G4.2
  • The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. 12740383

    Adult human mesenchymal stem cells from bone marrow stroma (hMSCs) differentiate into numerous mesenchymal tissue lineages and are attractive candidates for cell and gene therapy. When early passage hMSCs are plated or replated at low density, the cultures display a lag phase of 3-5 days, a phase of rapid exponential growth, and then enter a stationary phase without the cultures reaching confluence. We found that as the cultures leave the lag phase, they secrete high levels of dickkopf-1 (Dkk-1), an inhibitor of the canonical Wnt signaling pathway. The addition of recombinant Dkk-1 toward the end of the lag period increased proliferation and decreased the cellular concentration of beta-catenin. The addition of antibodies to Dkk-1 in the early log phase decreased proliferation. Also, expression of Dkk-1 in hMSCs decreased during cell cycle arrest induced by serum starvation. The results indicated that high levels of Dkk-1 allow the cells to reenter the cell cycle by inhibiting the canonical Wnt/beta-catenin signaling pathway. Since antibodies to Dkk-1 also increased the lag phase of an osteosarcoma line that expressed the gene, Dkk-1 may have a similar role in some other cell systems.
    Document Type:
    Reference
    Product Catalog Number:
    MAB2143
    Product Catalog Name:
    Anti-VCAM-1 Antibody, clone B-N8
  • A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. 28438836

    The tongue is one of the major structures involved in human food intake and speech. Tongue malformations such as aglossia, microglossia, and ankyloglossia are congenital birth defects, greatly affecting individuals' quality of life. However, the molecular basis of the tissue-tissue interactions that ensure tissue morphogenesis to form a functional tongue remains largely unknown. Here we show that ShhCre -mediated epithelial deletion of Wntless (Wls), the key regulator for intracellular Wnt trafficking, leads to lingual hypoplasia in mice. Disruption of epithelial Wnt production by Wls deletion in epithelial cells led to a failure in lingual epidermal stratification and loss of the lamina propria and the underlying superior longitudinal muscle in developing mouse tongues. These defective phenotypes resulted from a reduction in epithelial basal cells positive for the basal epidermal marker protein p63 and from impaired proliferation and differentiation in connective tissue and paired box 3 (Pax3)- and Pax7-positive muscle progenitor cells. We also found that epithelial Wnt production is required for activation of the Notch signaling pathway, which promotes proliferation of myogenic progenitor cells. Notch signaling in turn negatively regulated Wnt signaling during tongue morphogenesis. We further show that Pax7 is a direct Notch target gene in the embryonic tongue. In summary, our findings demonstrate a key role for the lingual epithelial signals in supporting the integrity of the lamina propria and muscular tissue during tongue development and that a Wnt/Notch/Pax7 genetic hierarchy is involved in this development.
    Document Type:
    Reference
    Product Catalog Number:
    17-20000
    Product Catalog Name:
    Magna ChIP™ G Tissue Kit
  • Wnt/β-catenin signaling and AXIN1 regulate apoptosis triggered by inhibition of the mutant kinase BRAFV600E in human melanoma. 22234612

    Because the Wnt/β-catenin signaling pathway is linked to melanoma pathogenesis and to patient survival, we conducted a kinome small interfering RNA (siRNA) screen in melanoma cells to expand our understanding of the kinases that regulate this pathway. We found that BRAF signaling, which is constitutively activated in many melanomas by the BRAF(V600E) mutation, inhibits Wnt/β-catenin signaling in human melanoma cells. Because inhibitors of BRAF(V600E) show promise in ongoing clinical trials, we investigated whether altering Wnt/β-catenin signaling might enhance the efficacy of the BRAF(V600E) inhibitor PLX4720. We found that endogenous β-catenin was required for PLX4720-induced apoptosis of melanoma cells and that activation of Wnt/β-catenin signaling synergized with PLX4720 to decrease tumor growth in vivo and to increase apoptosis in vitro. This synergistic enhancement of apoptosis correlated with reduced abundance of an endogenous negative regulator of β-catenin, AXIN1. In support of the hypothesis that AXIN1 is a mediator rather than a marker of apoptosis, siRNA directed against AXIN1 rendered resistant melanoma cell lines susceptible to apoptosis in response to treatment with a BRAF(V600E) inhibitor. Thus, Wnt/β-catenin signaling and AXIN1 may regulate the efficacy of inhibitors of BRAF(V600E), suggesting that manipulation of the Wnt/β-catenin pathway could be combined with BRAF inhibitors to treat melanoma.
    Document Type:
    Reference
    Product Catalog Number:
    05-413
    Product Catalog Name:
    Anti-phospho-GSK3 (Tyr279/Tyr216) Antibody, clone 5G-2F
  • Wnt activation downregulates olfactomedin-1 in Fallopian tubal epithelial cells: a microenvironment predisposed to tubal ectopic pregnancy. 21968811

    Ectopic pregnancy (EP) occurs when the embryo fails to transit to the uterus and attach to the luminal epithelium of the Fallopian tube (FT). Tubal EP is a common gynecological emergency and more than 95% of EP occurs in the ampullary region of the FT. In humans, Wnt activation and downregulation of olfactomedin-1 (Olfm-1) occur in the receptive endometrium and coincided with embryo implantation in vivo. Whether similar molecular changes happen in the FT leading to EP remains unclear. We hypothesized that activation of Wnt signaling downregulates Olfm-1 expression predisposes to EP. We investigated the spatiotemporal expression of Olfm-1 in FT from non-pregnant women and women with EP, and used a novel trophoblastic spheroid (embryo surrogate)-FT epithelial cell co-culture model (JAr and OE-E6/E7 cells) to study the role of Olfm-1 on spheroid attachment. Olfm-1 mRNA expression in the ampullary region of non-pregnant FT was higher (Pless than 0.05) in the follicular phase than in the luteal phase. Ampullary tubal Olfm-1 expression was lower in FT from women with EP compared to normal controls at the luteal phase (histological scoring (H-SCORE)=1.3±0.2 vs 2.4±0.5; Pless than 0.05). Treatment of OE-E6/E7 with recombinant Olfm-1 (0.2-5 μg/ml) suppressed spheroid attachment to OE-E6/E7 cells, while activation of Wnt-signaling pathway by Wnt3a or LiCl reduced endogenous Olfm-1 expression and increased spheroid attachment. Conversely, suppression of Olfm-1 expression by RNAi increased spheroid attachment to OE-E6/E7 cells. Taken together, Wnt activation suppresses Olfm-1 expression, and this may predispose a favorable microenvironment of the retained embryo in the FT, leading to EP in humans.
    Document Type:
    Reference
    Product Catalog Number:
    05-665
    Product Catalog Name:
    Anti-Active-β-Catenin (Anti-ABC) Antibody, clone 8E7
  • WNT pathways in the neonatal ovine uterus: potential specification of endometrial gland morphogenesis by SFRP2. 16407498

    Endometrial glands are critical for uterine function and develop between birth (Postnatal Day [P] 0) and P56 in the neonatal ewe. Endometrial gland morphogenesis or adenogenesis involves the site-specific budding differentiation of the glandular epithelium from the luminal epithelium followed by their coiling/branching development within the stroma of the intercaruncular areas of the endometrium. To determine whether WNT signaling regulates endometrial adenogenesis, the WNT signaling system was studied in the neonatal ovine uterus. WNT5A, WNT7A, and WNT11 were expressed in the uterine epithelia, whereas WNT2B was in the stroma. The WNT receptors FZD2 and FZD6 and coreceptor LRP6 were detected in all uterine cells, and FZD6 was particularly abundant in the endometrial epithelia. Secreted FZD-related protein-2 (SFRP2), a WNT antagonist, was not detected in the P0 uterus, but was abundant in the aglandular caruncular areas of the endometrium between P7 and P56. Exposure of ewes to estrogens during critical developmental periods inhibits or retards endometrial adenogenesis. Estrogen-induced disruption of endometrial adenogenesis was associated with reduction or ablation of WNT2B, WNT7A, and WNT11, and with an increase in WNT2 and SFRP2 mRNA, depending on exposure period. Collectively, results implicate the canonical and noncanonical WNT pathways in regulation of postnatal ovine uterine development and endometrial adenogenesis. Expression of SFRP2 in aglandular caruncular areas may inhibit the WNT signaling pathway, thereby concentrating WNT signaling and restricting endometrial adenogenesis in the intercaruncular areas of the uterus. Further, estrogen-induced inhibition of adenogenesis may be mediated by a reduction in WNT signaling caused by aberrant induction of SFRP2 and loss of several critical WNTs.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. 19473496

    In breast cancer, deregulation of the WNT signaling pathway occurs by autocrine mechanisms. WNT ligands and Frizzled receptors are coexpressed in primary breast tumors and cancer cell lines. Moreover, many breast tumors show hypermethylation of the secreted Frizzled-related protein 1 (sFRP1) promoter region, causing low expression of this WNT antagonist. We have previously shown that the WNT pathway influences proliferation of breast cancer cell lines via activation of canonical signaling and epidermal growth factor receptor transactivation, and that interference with WNT signaling reduces proliferation. Here we examine the role of WNT signaling in breast tumor cell migration and on xenograft outgrowth.The breast cancer cell line MDA-MB-231 was used to study WNT signaling. We examined the effects of activating or blocking the WNT pathway on cell motility by treatment with WNT ligands or by ectopic sFPR1 expression, respectively. The ability of sFRP1-expressing MDA-MB-231 cells to grow as xenografts was also tested. Microarray analyses were carried out to identify targets with roles in MDA-MB-231/sFRP1 tumor growth inhibition.We show that WNT stimulates the migratory ability of MDA-MB-231 cells. Furthermore, ectopic expression of sFRP1 in MDA-MB-231 cells blocks canonical WNT signaling and decreases their migratory potential. Moreover, the ability of MDA-MB-231/sFRP1-expressing cells to grow as xenografts in mammary glands and to form lung metastases is dramatically impaired. Microarray analyses led to the identification of two genes, CCND1 and CDKN1A, whose expression level is selectively altered in vivo in sFRP1-expressing tumors. The encoded proteins cyclin D1 and p21Cip1 were downregulated and upregulated, respectively, in sFRP1-expressing tumors, suggesting that they are downstream mediators of WNT signaling.Our results show that the WNT pathway influences multiple biological properties of MDA-MB-231 breast cancer cells. WNT stimulates tumor cell motility; conversely sFRP1-mediated WNT pathway blockade reduces motility. Moreover, ectopic sFRP1 expression in MDA-MB-231 cells has a strong negative impact on tumor outgrowth and blocked lung metastases. These results suggest that interference with WNT signaling using sFRP1 to block the ligand- receptor interaction may be a valid therapeutic approach in breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    MAB2079Z
    Product Catalog Name:
    Anti-Integrin β1 Antibody, activated, clone HUTS-4, Azide Free
  • Wnt/beta-catenin signaling promotes podocyte dysfunction and albuminuria. 19628668

    Podocyte dysfunction, one of the major causes of proteinuria, leads to glomerulosclerosis and end stage renal disease, but its underlying mechanism remains poorly understood. Here we show that Wnt/beta-catenin signaling plays a critical role in podocyte injury and proteinuria. Treatment with adriamycin induced Wnt and activated beta-catenin in mouse podocytes. Overexpression of Wnt1 in vivo activated glomerular beta-catenin and aggravated albuminuria and adriamycin-induced suppression of nephrin expression, whereas blockade of Wnt signaling with Dickkopf-1 ameliorated podocyte lesions. Podocyte-specific knockout of beta-catenin protected against development of albuminuria after injury. Moreover, pharmacologic activation of beta-catenin induced albuminuria in wild-type mice but not in beta-catenin-knockout littermates. In human proteinuric kidney diseases such as diabetic nephropathy and focal segmental glomerulosclerosis, we observed upregulation of Wnt1 and active beta-catenin in podocytes. Ectopic expression of either Wnt1 or stabilized beta-catenin in vitro induced the transcription factor Snail and suppressed nephrin expression, leading to podocyte dysfunction. These results suggest that targeting hyperactive Wnt/beta-catenin signaling may represent a novel therapeutic strategy for proteinuric kidney diseases.
    Document Type:
    Reference
    Product Catalog Number:
    05-665
    Product Catalog Name:
    Anti-Active-β-Catenin (Anti-ABC) Antibody, clone 8E7