Millipore Sigma Vibrant Logo
Atención: Nos hemos mudado. Los productos Merck Millipore ya no pueden adquirirse en MerckMillipore.comMás información
 

autophagy


558 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (396)
  • (6)
  • (1)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Dengue virus infection induces autophagy: an in vivo study. 24011333

    We and others have reported that autophagy is induced by dengue viruses (DVs) in various cell lines, and that it plays a supportive role in DV replication. This study intended to clarify whether DV infection could induce autophagy in vivo. Furthermore, the effect of DV induced autophagy on viral replication and DV-related pathogenesis was investigated.The physiopathological parameters were evaluated after DV2 was intracranially injected into 6-day-old ICR suckling mice. Autophagy-related markers were monitored by immunohistochemical/immunofluorescent staining and Western blotting. Double-membrane autophagic vesicles were investigated by transmission-electron-microscopy. DV non-structural-protein-1 (NS1) expression (indicating DV infection) was detected in the cerebrum, medulla and midbrain of the infected mice. In these infected tissues, increased LC3 puncta formation, LC3-II expression, double-membrane autophagosome-like vesicles (autophagosome), amphisome, and decreased p62 accumulation were observed, indicating that DV2 induces the autophagic progression in vivo. Amphisome formation was demonstrated by colocalization of DV2-NS1 protein or LC3 puncta and mannose-6-phosphate receptor (MPR, endosome marker) in DV2-infected brain tissues. We further manipulated DV-induced autophagy by the inducer rapamycin and the inhibitor 3-methyladenine (3MA), which accordingly promoted or suppressed the disease symptoms and virus load in the brain of the infected mice.We demonstrated that DV2 infection of the suckling mice induces autophagy, which plays a promoting role in DV replication and pathogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • TFEB inhibits endothelial cell inflammation and reduces atherosclerosis. 28143903

    Transcription factor EB (TFEB) is a master regulator of autophagy and lysosome biogenesis. We investigated the function of TFEB in vascular biology and pathophysiology and demonstrated that TFEB in endothelial cells inhibited inflammation and reduced atherosclerosis development. Laminar shear stress, which protects against atherosclerosis, increased TFEB abundance in cultured primary human endothelial cells. Furthermore, TFEB overexpression in these cells was anti-inflammatory, whereas TFEB knockdown aggravated inflammation. The anti-inflammatory effect of TFEB was, at least, partially due to reduced oxidative stress because TFEB overexpression in endothelial cells decreased the concentrations of reactive oxygen species and increased the expression of the antioxidant genes HO1 (which encodes heme oxygenase 1) and SOD2 (which encodes superoxide dismutase 2). In addition, transgenic mice with endothelial cell-specific expression of TFEB exhibited reduced leukocyte recruitment to endothelial cells and decreased atherosclerosis development. Our study suggests that TFEB is a protective transcription factor against endothelial cell inflammation and a potential target for treating atherosclerosis and associated cardiovascular diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Unique insights into maternal mitochondrial inheritance in mice. 23878233

    In animals, mtDNA is always transmitted through the female and this is termed "maternal inheritance." Recently, autophagy was reported to be involved in maternal inheritance by elimination of paternal mitochondria and mtDNA in Caenorhabditis elegans; moreover, by immunofluorescence, P62 and LC3 proteins were also found to colocalize to sperm mitochondria after fertilization in mice. Thus, it has been speculated that autophagy may be an evolutionary conserved mechanism for paternal mitochondrial elimination. However, by using two transgenic mouse strains, one bearing GFP-labeled autophagosomes and the other bearing red fluorescent protein-labeled mitochondria, we demonstrated that autophagy did not participate in the postfertilization elimination of sperm mitochondria in mice. Although P62 and LC3 proteins congregated to sperm mitochondria immediately after fertilization, sperm mitochondria were not engulfed and ultimately degraded in lysosomes until P62 and LC3 proteins disengaged from sperm mitochondria. Instead, sperm mitochondria unevenly distributed in blastomeres during cleavage and persisted in several cells until the morula stages. Furthermore, by using single sperm mtDNA PCR, we observed that most motile sperm that had reached the oviduct for fertilization had eliminated their mtDNA, leaving only vacuolar mitochondria. However, if sperm with remaining mtDNA entered the zygote, mtDNA was not eliminated and could be detected in newborn mice. Based on these results, we conclude that, in mice, maternal inheritance of mtDNA is not an active process of sperm mitochondrial and mtDNA elimination achieved through autophagy in early embryos, but may be a passive process as a result of prefertilization sperm mtDNA elimination and uneven mitochondrial distribution in embryos.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. 21691147

    Sorafenib, a potent multikinase inhibitor, has been recognized as the standard systemic treatment for patients with advanced hepatocellular carcinoma (HCC). However, the direct functional mechanism of tumor lethality mediated by sorafenib remains to be fully characterized, and the precise mechanisms of drug resistance are largely unknown. Here, we showed sorafenib induced both apoptosis and autophagy in human HCC cells through a mechanism that involved endoplasmic reticulum (ER) stress and was independent of the MEK1/2-ERK1/2 pathway. Upregulation of IRE1 signals from sorafenib-induced ER stress was critical for the induction of autophagy. Moreover, autophagy activation alleviated the ER stress-induced cell death. Inhibition of autophagy using either pharmacological inhibitors or essential autophagy gene knockdown enhanced cell death in sorafenib treated HCC cell lines. Critically, the combination of sorafenib with the autophagy inhibitor chloroquine produced more pronounced tumor suppression in HCC both in vivo and in vitro. These findings indicated that both ER stress and autophagy were involved in the cell death evoked by sorafenib in HCC cells. The combination of autophagy modulation and molecular targeted therapy is a promising therapeutic strategy in treatment of HCC.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB2302
    Nombre del producto:
    Anti-GAPDH Antibody
  • NIX is required for programmed mitochondrial clearance during reticulocyte maturation. 18048346

    The regulated clearance of mitochondria is a well recognized but poorly understood aspect of cellular homeostasis, and defects in this process have been linked to aging, degenerative diseases, and cancer. Mitochondria are recycled through an autophagy-related process, and reticulocytes, which completely eliminate their mitochondria during maturation, provide a physiological model to study this phenomenon. Here, we show that mitochondrial clearance in reticulocytes requires the BCL2-related protein NIX (BNIP3L). Mitochondrial clearance does not require BAX, BAK, BCL-X(L), BIM, or PUMA, indicating that NIX does not function through established proapoptotic pathways. Similarly, NIX is not required for the induction of autophagy during terminal erythroid differentiation. NIX is required for the selective elimination of mitochondria, however, because mitochondrial clearance, in the absence of NIX, is arrested at the stage of mitochondrial incorporation into autophagosomes and autophagosome maturation. These results yield insight into the mechanism of mitochondrial clearance in higher eukaryotes. Furthermore, they show a BAX- and BAK-independent role for a BCL2-related protein in development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-536
    Nombre del producto:
    Anti-Bak Antibody, NT
  • Combined epidermal growth factor receptor and Beclin1 autophagic protein expression analysis identifies different clinical presentations, responses to chemo- and radiothe ... 25821789

    Dysregulated EGFR in glioblastoma may inactivate the key autophagy protein Beclin1. Each of high EGFR and low Beclin1 protein expression, independently, has been associated with tumor progression and poor prognosis. High (H) compared to low (L) expression of EGFR and Beclin1 is here correlated with main clinical data in 117 patients after chemo- and radiotherapy. H-EGFR correlated with low Karnofsky performance and worse neurological performance status, higher incidence of synchronous multifocality, poor radiological evidence of response, shorter progression disease-free (PDFS), and overall survival (OS). H-Beclin1 cases showed better Karnofsky performance status, higher incidence of objective response, longer PDFS, and OS. A mutual strengthening effect emerges in correlative power of stratified L-EGFR and H-Beclin1 expression with incidence of radiological response after treatment, unifocal disease, and better prognosis, thus identifying an even longer OS group (30 months median OS compared to 18 months in L-EGFR, 15 months in H-Beclin1, and 11 months in all GBs) (P = 0.0001). Combined L-EGFR + H-Beclin1 expression may represent a biomarker in identifying relatively favorable clinical presentations and prognosis, thus envisaging possible EGFR/Beclin1-targeted therapies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    04-1116
  • Autophagy is essential for cardiac morphogenesis during vertebrate development. 24441423

    Genetic analyses indicate that autophagy, an evolutionarily conserved lysosomal degradation pathway, is essential for eukaryotic differentiation and development. However, little is known about whether autophagy contributes to morphogenesis during embryogenesis. To address this question, we examined the role of autophagy in the early development of zebrafish, a model organism for studying vertebrate tissue and organ morphogenesis. Using zebrafish that transgenically express the fluorescent autophagy reporter protein, GFP-LC3, we found that autophagy is active in multiple tissues, including the heart, during the embryonic period. Inhibition of autophagy by morpholino knockdown of essential autophagy genes (including atg5, atg7, and becn1) resulted in defects in morphogenesis, increased numbers of dead cells, abnormal heart structure, and reduced organismal survival. Further analyses of cardiac development in autophagy-deficient zebrafish revealed defects in cardiac looping, abnormal chamber morphology, aberrant valve development, and ectopic expression of critical transcription factors including foxn4, tbx5, and tbx2. Consistent with these results, Atg5-deficient mice displayed abnormal Tbx2 expression and defects in valve development and chamber septation. Thus, autophagy plays an essential, conserved role in cardiac morphogenesis during vertebrate development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501R
    Nombre del producto:
    Anti-Actin Antibody,clone C4
  • Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. 21964925

    Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting 'autophagy receptors' in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF-TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. 22361585

    Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB3613
    Nombre del producto:
    Anti-Caspase 12 Antibody, NT
  • Ketone bodies stimulate chaperone-mediated autophagy. 15883160

    Chaperone-mediated autophagy (CMA) is a selective lysosomal protein degradative process that is activated in higher organisms under conditions of prolonged starvation and in cell culture by the removal of serum. Ketone bodies are comprised of three compounds (beta-hydroxybutyrate, acetoacetate, and acetone) that circulate during starvation, especially during prolonged starvation. Here we have investigated the hypothesis that ketone bodies induce CMA. We found that physiological concentrations of beta-hydroxybutyrate (BOH) induced proteolysis in cells maintained in media with serum and without serum; however, acetoacetate only induced proteolysis in cells maintained in media with serum. Lysosomes isolated from BOH-treated cells displayed an increased ability to degrade both glyceraldehyde-3-phosphate dehydrogenase and ribonuclease A, substrates for CMA. Isolated lysosomes from cells maintained in media without serum also demonstrated an increased ability to degrade glyceraldehyde-3-phosphate dehydrogenase and ribonuclease A when the reaction was supplemented with BOH. Such treatment did not affect the levels of lysosome-associated membrane protein 2a or lysosomal heat shock cognate protein of 70 kDa, two rate-limiting proteins in CMA. However, pretreatment of glyceraldehyde-3-phosphate and ribonuclease A with BOH increased their rate of degradation by isolated lysosomes. Lysosomes pretreated with BOH showed no increase in proteolysis, suggesting that BOH acts on the substrates to increase their rates of proteolysis. Using OxyBlot analysis to detect carbonyl formation on proteins, one common marker of protein oxidation, we showed that treatment of substrates with BOH increased their oxidation. Neither glycerol, another compound that increases in circulation during prolonged starvation, nor butanol or butanone, compounds closely related to BOH, had an effect on CMA. The induction of CMA by ketone bodies may provide an important physiological mechanism for the activation of CMA during prolonged starvation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7150
    Nombre del producto:
    OxyBlot Protein Oxidation Detection Kit