Millipore Sigma Vibrant Logo
 

biochemicals


1214 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,094)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Functional, structural and molecular aspects of diastolic heart failure in the diabetic (mRen-2)27 rat. 17716638

    Diabetic cardiomyopathy is an increasingly recognized cause of cardiac failure despite preserved left ventricular systolic function. Given the over-expression of angiotensin II in human diabetic cardiomyopathy, we hypothesized that combining hyperglycaemia with an enhanced tissue renin-angiotensin system would lead to the development of diastolic dysfunction with adverse remodeling in a rodent model.Homozygous (mRen-2)27 rats and non-transgenic Sprague Dawley (SD) rats were randomized to receive streptozotocin (diabetic) or vehicle (non-diabetic) and followed for 6 weeks. Prior to tissue collection, animals underwent pressure-volume loop acquisition.Diabetic Ren-2 rats developed impairment of both active and passive phases of diastole, accompanied by reductions in SERCA-2a ATPase and phospholamban along with activation of the fetal gene program. Structural features of diabetic cardiomyopathy in the Ren-2 rat included interstitial fibrosis, cardiac myocyte hypertrophy and apoptosis in conjunction with increased activity of transforming growth factor-beta (pless than 0.01 compared with non-diabetic Ren-2 rats for all parameters). No significant functional or structural derangements were observed in non-transgenic, SD diabetic rats.These findings indicate that the combination of enhanced tissue renin-angiotensin system and hyperglycaemia lead to the development of diabetic cardiomyopathy. Fibrosis, and myocyte hypertrophy, a prominent feature of this model, may be a consequence of activation of the pro-sclerotic cytokine, transforming growth factor-beta, by the diabetic state.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Analysis of gene expression induced by diethylstilbestrol (DES) in human primitive Mullerian duct cells using microarray. 15766595

    The Mullerian ducts are strongly influenced by natural estrogen, estradiol (E2) and diethylstilbestrol (DES) in their development. We screened E2 and DES responsive genes using a microarray analysis in human primitive Mullerian duct cell line, EMTOKA cells expressed estrogen receptor (ER) beta. c-myc oncogene and other target genes expression was detected in cells treated by high-dose DES, but ER antagonist ICI 182,780 could not prevent c-myc induction above. Results of our present study suggested the presence of ER independent pathway in oncogenes induction process by high-dose DES treatment in a human primitive Mullerian duct cell line.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB429
  • Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. 16204465

    Multidrug resistance-associated protein (Mrp) 2-deficient transport-deficient (TR(-)) rats, together with their transport-competent Wistar counterparts (wild type), have been used to examine the contribution of Mrp2 to drug disposition. However, little is known about potential variation in expression of other transport proteins between TR(-) and wild-type rats or whether these differences are tissue-specific. Sections of liver, kidney, brain, duodenum, jejunum, ileum, and colon were obtained from male TR(-) and wild-type Wistar rats. Samples were homogenized in protease inhibitor cocktail and ultracentrifuged at 100,000g for 30 min to obtain membrane fractions. Mrp2, Mrp3, Mrp4, P-glycoprotein, sodium-dependent taurocholate cotransporting polypeptide, organic anion transporting polypeptides 1a1 and 1a4, bile salt export pump, breast cancer resistance protein, ileal bile acid transporter, UDP-glucuronosyl transferase (UGT1a), glyceraldehyde-3-phosphate dehydrogenase, and beta-actin protein expression were determined by Western blot. Mrp3 was significantly up-regulated in the liver ( approximately 6-fold) and kidney ( approximately 3.5-fold) of TR(-) rats compared with wild-type controls. Likewise, the expression of UGT1a enzymes was increased in the liver and kidney of TR(-) rats by approximately 3.5- and approximately 5.5-fold, respectively. Interestingly, Mrp3 expression was down-regulated in the small intestine of TR(-) rats, but expression was similar to wild type in the colon. Mrp4 was expressed to varying extents along the intestine. Expression of some transport proteins and UGT1a enzymes differ significantly between TR(-) and wild-type rats. Therefore, altered drug disposition in TR(-) rats must be interpreted cautiously because up- or down-regulation of other transport proteins may play compensatory roles in the presence of Mrp2 deficiency.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Impaired follicle development and infertility in female mice lacking steroidogenic factor 1 in ovarian granulosa cells. 18703422

    The nuclear receptor steroidogenic factor 1 (SF-1 [officially designated NR5A1]) is essential for fetal gonadal development, but its roles in postnatal ovarian function are less well defined. Herein, we have extended our analyses of knockout (KO) mice with markedly decreased SF-1 expression in granulosa cells. As described, these SF-1 KO mice had hypoplastic ovaries that contained a decreased number of follicles and lacked corpora lutea. In the present study, we showed that SF-1 KO mice exhibited abnormal estrous cycles, were infertile, and released significantly fewer oocytes in response to a standard superovulation regimen. Moreover, they had blunted induction of plasma estradiol in response to gonadotropins. The granulosa cell-specific SF-1 KO also significantly affected ovarian expression of putative SF-1 target genes. Consistent with their decreased follicle number, these mice had reduced ovarian expression of anti-müllerian hormone (Amh), which correlates with the reserve pool of ovarian follicles, as well as decreased gonadotropin-induced ovarian expression of aromatase (Cyp19a1) and cyclin D2 (Ccnd2). In contrast, perhaps because of their abnormal cyclicity, SF-1 KO ovaries had higher basal expression of inhibin-alpha. They also had decreased immunoreactivity for genes related to proliferation (Ccnd2 and Mki67 [also known as Ki67]) and increased expression of Cdkn1b, also known as p27, which inhibits cyclin-dependent kinases, arguing for a role of SF-1 in granulosa cell proliferation. These findings demonstrate that SF-1 has a key role in female reproduction via essential actions in granulosa cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1244
    Nombre del producto:
    Anti-Cytochrome P450 Side Chain Cleavage Enzyme Antibody, a.a. 421-441
  • Nephrocystin-conserved domains involved in targeting to epithelial cell-cell junctions, interaction with filamins, and establishing cell polarity. 12006559

    Nephrocystin is the protein product of the gene mutated in juvenile nephronophthisis, an autosomal recessive cystic kidney disease afflicting children and young adults. Because the normal cellular function of nephrocystin is largely unknown, the molecular defects underlying disease pathogenesis remain obscure. Analysis of nephrocystin amino acid sequences from human and other species revealed three distinct conserved domains including Src homology 3 and coil-coil domains in the N-terminal region, as well as a large highly conserved C-terminal region bearing no obvious homology to other proteins and hence referred to as the "nephrocystin homology domain" (NHD). The objective of this study was to gain insight into nephrocystin function by defining functional properties of the conserved domains. We analyzed a series of nephrocystin deletion mutants expressed in Madin-Darby canine kidney and COS-7 cells. This analysis revealed previously unrecognized functional attributes of the NHD, including abilities to promote both self-association and epithelial cell-cell junctional targeting. We further observed that Madin-Darby canine kidney cell lines stably expressing a nephrocystin mutant with a deletion of the Src homology 3 domain have reduced ability to establish tight junctions as measured by transepithelial electrical resistance. Finally, from a two-hybrid screen and coimmunoprecipitation studies we identified members of the filamin family of actin-binding proteins as having the capacity to interact with the NHD. These findings support a functional role for nephrocystin as a docking protein involved in organizing a protein complex to regulate the actin cytoskeleton at sites of epithelial cell-cell adhesion and further suggest that these properties are important for establishing epithelial cell polarity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1678
    Nombre del producto:
    Anti-Filamin A Antibody, clone PM6/317
  • The role of presenilin-1 in the gamma-secretase cleavage of the amyloid precursor protein of Alzheimer's disease. 10636839

    Presenilin-1 (PS1) is required for the release of the intracellular domain of Notch from the plasma membrane as well as for the cleavage of the amyloid precursor protein (APP) at the gamma-secretase cleavage site. It remains to be demonstrated whether PS1 acts by facilitating the activity of the protease concerned or is the protease itself. PS1 could have a gamma-secretase activity by itself or could traffic APP and Notch to the appropriate cellular compartment for processing. Human APP 695 and PS1 were coexpressed in Sf9 insect cells, in which endogenous gamma-secretase activity is not detected. In baculovirus-infected Sf9 cells, PS1 undergoes endoproteolysis and interacts with APP. However, PS1 does not cleave APP in Sf9 cells. In CHO cells, endocytosis of APP is required for Abeta secretion. Deletion of the cytoplasmic sequence of APP (APPDeltaC) inhibits both APP endocytosis and Abeta production. When APPDeltaC and PS1 are coexpressed in CHO cells, Abeta is secreted without endocytosis of APP. Taken together, these results conclusively show that, although PS1 does not cleave APP in Sf9 cells, PS1 allows the secretion of Abeta without endocytosis of APP by CHO cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1563
    Nombre del producto:
    Anti-Presenilin-1 Antibody, NT, clone hPS1-NT
  • Identification and characterization of a PU.1/Spi-B binding site in the bovine leukemia virus long terminal repeat. 12771939

    Bovine leukemia virus (BLV) is a B-lymphotropic oncogenic retrovirus whose transcriptional promoter is located in the viral 5' long terminal repeat (LTR). To date, no B-lymphocyte-specific cis-regulatory element has been identified in this region. Since ETS proteins are known to regulate transcription of numerous retroviruses, we searched for the presence in the BLV promoter region of binding sites for PU.1/Spi-1, a B-cell- and macrophage-specific ETS family member. In this report, nucleotide sequence analysis of the viral LTR identified a PUbox located at -95/-84 bp. We demonstrated by gel shift and supershift assays that PU.1 and the related Ets transcription factor Spi-B interacted specifically with this PUbox. A 2-bp mutation (GGAA--greater than CCAA) within this motif abrogated PU.1/Spi-B binding. This mutation caused a marked decrease in LTR-driven basal gene expression in transient transfection assays of B-lymphoid cell lines, but did not impair the responsiveness of the BLV promoter to the virus-encoded transactivator Tax(BLV). Moreover, ectopically expressed PU.1 and Spi-B proteins transactivated the BLV promoter in a PUbox-dependent manner. Taken together, our results provide the first demonstration of regulation of the BLV promoter by two B-cell-specific Ets transcription factors, PU.1 and Spi-B. The PU.1/Spi-B binding site identified here could play an important role in BLV replication and B-lymphoid tropism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. 11290288

    During development of the cerebellum, Sonic hedgehog (SHH) is expressed in migrating and settled Purkinje neurons and is directly responsible for proliferation of granule cell precursors in the external germinal layer. We have previously demonstrated that SHH interacts with vitronectin in the differentiation of spinal motor neurons. Here, we analysed whether similar interactions between SHH and extracellular matrix glycoproteins regulate subsequent steps of granule cell development. Laminins and their integrin receptor subunit alpha6 accumulate in the outer most external germinal layer where proliferation of granule cell precursors is maximal. Consistent with this expression pattern, laminin significantly increases SHH-induced proliferation in primary cultures of cerebellar granule cells. Vitronectin and its integrin receptor subunits alpha(v) are expressed in the inner part of the external germinal layer where granule cell precursors exit the cell cycle and commence differentiation. In cultures, vitronectin is able to overcome SHH-induced proliferation, thus allowing granule cell differentiation. Our studies indicate that the pathway in granule cell precursors responsible for the conversion of a proliferative SHH-mediated response to a differentiation signal depends on CREB. Vitronectin stimulates phosphorylation of cyclic-AMP responsive element-binding protein (CREB), and over-expression of CREB is sufficient to induce granule cell differentiation in the presence of SHH. Taken together, these data suggest that granule neuron differentiation is regulated by the vitronectin-induced phosphorylation of CREB, a critical event that terminates SHH-mediated proliferation and permits the differentiation program to proceed in these cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1976
    Nombre del producto:
    Anti-Integrin αVβ3 Antibody, clone LM609
  • Regulation of the MDR1 gene by transcriptional repressors selected using peptide combinatorial libraries. 10860921

    The ability to selectively regulate the expression of genes implicated in cancer or other diseases could have important ramifications for both basic research and for therapy. Using peptide combinatorial libraries expressed in yeast, we have screened for novel zinc finger proteins that selectively bind to an overlapping EGR1/SP1/WT1 regulatory site in the promoter of the MDR1 multidrug resistance gene. The novel proteins were only moderately effective in blocking transcription by simple masking of the target site. However, when coupled to mammalian transactivator or repressor domains, they could selectively modulate the expression of reporter genes having promoters containing the MDR1 target site. Moreover, they could also regulate transcription of the chromosomal MDR1 gene. Thus, in K562 cells, 12-O-tetradecanoylphorbol-13-acetate-inducible expression of P-glycoprotein, the product of MDR1 gene, was strongly and selectively inhibited by the presence of a repressor protein targeted to the MDR1 promoter. These studies potentially provide a novel alternative approach to the control of multidrug resistance. They also provide important insights into strategies for developing selective regulators of gene expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1999
    Nombre del producto:
    Anti-Integrin α5β1 Antibody, clone HA5