Millipore Sigma Vibrant Logo
 

chemokine+like+receptor+1


33 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (18)
  • (8)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Cloning, chromosomal localization, and RNA expression of a human beta chemokine receptor-like gene. 7646814

    A human cDNA encoding a putative G protein-coupled receptor designated chemokine beta receptor-like 1 (CMKBRL1) was isolated from an eosinophilic leukemia library. Its deduced sequence is approximately 40% identical to previously cloned receptors for the beta chemokines macrophage inflammatory protein-1 alpha (MIP-1 alpha), RANTES, and monocyte chemoattractant protein-1 (MCP-1), which are chemoattractants for blood leukocytes, and is 83% identical to the product of the orphan rat cDNA RBS 11. Like the MIP-1 alpha/RANTES receptor, CMK-BRL1 is encoded by a small, single-copy gene that maps to chromosome 3p21 and is expressed in leukocytes. However, two screening assays with a broad panel of chemokines failed to identify its ligand. CMKBRL1 mRNA was detectable by Northern blot hybridization in neutrophils and monocytes, but not eosinophils, and was also found in eight solid organs that were tested with particularly high expression in brain. The RNA distribution of the known beta chemokine receptors was overlapping but distinct from that of CMKBRL1. MIP-1 alpha/RANTES receptor mRNA was detectable in neutrophils, monocytes, eosinophils, and in all eight solid organs tested, with particularly high expression in placenta, lung, and liver. MCP-1 receptor mRNA was found in monocytes, lung, liver, and pancreas. These results suggest that the ligand for the putative CMKBRL1 receptor is a beta chemokine that targets both neutrophils and monocytes. Moreover, the RNA distributions suggest that CMKBRL1, the MIP-1 alpha/RANTES receptor, and the MCP-1 receptor may have both overlapping and distinct biological roles.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Activating transcription factor 3 (ATF3) represses the expression of CCL4 in murine macrophages. 16982098

    Acute expression of macrophage inflammatory protein-1 beta (also known as CCL4) promotes beneficial leukocyte recruitment to infected tissues, but chronic expression of this chemokine contributes to inflammatory disease. CCL4 expression is controlled largely at the transcriptional level and an ATF/CRE sequence located in the promoter (-104 to -97bp, relative to the transcriptional start site) has been identified as a critical cis-acting element. The trans-acting binding proteins that influence CCL4 transcription via this site are largely unknown. We investigated whether activating transcription factor 3 (ATF3), a member of the ATF/CREB family of transcription factors, binds to the CCL4 ATF/CRE site in macrophages. Using the electrophoretic mobility shift assay and the chromatin immunoprecipitation assay, we found that ATF3 binds to the ATF/CRE site within the CCL4 promoter in untreated and lipopolysaccharide (LPS)-stimulated macrophages. Quantitative RT-PCR analysis showed that CCL4 mRNA levels in elicited peritoneal macrophages from ATF3(-/-) mice are significantly higher than in congenic ATF3(+/+) macrophages under both unstimulated and LPS-stimulated conditions, suggesting that ATF3 represses transcription of the CCL4 gene. Consistent with the higher gene expression, ATF3-deficient macrophages secreted more CCL4 protein than ATF3(+/+) macrophages. Similar results were obtained in bone-marrow-derived macrophages treated with Toll-like receptor 2, 3, 4 and 5 agonists. Thus, we conclude that ATF3 constitutively binds to the ATF/CRE site in the CCL4 promoter where it represses basal and pathogen-associated molecular pattern (PAMP)-stimulated transcription. Consequently, ATF3 appears to be part of a control mechanism that limits the amount of CCL4 released by macrophages, preventing excessive inflammation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. 9726990

    Fractalkine is a multimodular human leukocyte chemoattractant protein and a member of the chemokine superfamily. Unlike other human chemokines, the chemokine domain of fractalkine has three amino acids between two conserved cysteines, referred to as the CX3C motif. Both plasma membrane-associated and shed forms of fractalkine have been identified. Here, we show that the recombinant 76-amino acid chemokine domain of fractalkine is a potent and highly specific chemotactic agonist at a human orphan receptor previously named V28 or alternatively CMKBRL1 (chemokine beta receptor-like 1), which was shown previously to be expressed in neutrophils, monocytes, T lymphocytes, and several solid organs, including brain. CMKBRL1/V28 also functioned with CD4 as a coreceptor for the envelope protein from a primary isolate of HIV-1 in a cell-cell fusion assay, and fusion was potently and specifically inhibited by fractalkine. Thus CMKBRL1/V28 is a specific receptor for fractalkine, and we propose to rename it CX3CR1 (CX3C chemokine receptor 1), according to an accepted nomenclature system.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1891
    Nombre del producto:
    Anti-C-X-X-X-C Chemokine Receptor 1 Antibody, extracellular loop
  • Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells. 10702246

    Ovarian cancer typically disseminates widely in the abdomen, a characteristic that limits curative therapy. The mechanisms that promote ovarian cancer cell migration are incompletely understood. We studied model SK-OV-3 ovarian cancer cells and observed robust expression of the alpha chemokine receptors CXCR-1 and CXCR-2. Interleukin-8 (IL-8) treatment caused shape changes in the cells, with membrane ruffling and formation/retraction of thin actin-like projections, as detected by time-lapse microscopy. Stimulation of the CXCR-1/2 receptors by human interleukin 8 (IL-8) rapidly activated the p44/42 mitogen-activated protein (extracellular signal-regulated kinase (Erk1/2)) kinase pathway. Treatment of SK-OV-3 cells with the inhibitors genestein and herbimycin A indicated that tyrosine kinases were involved in the IL-8 activation of Erk1 and Erk2. Of note, IL-8 induced transient phosphorylation of the epidermal growth factor (EGF) receptor and its association with the adaptor molecules Shc and Grb2. This transactivation of the EGF receptor was dependent on intracellular Ca(2+) mobilization. Furthermore AG1478, a specific inhibitor of the EGF receptor kinase, blocked Erk1 and Erk2 activation. c-Src kinase was not involved in the IL-8-mediated phosphorylation of the EGF receptor, but was critical for Shc phosphorylation and downstream Erk1/2 kinase activation. These results suggest important cross-talk between chemokine and growth factor pathways that may link signals of cell migration and proliferation in ovarian cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-203
  • Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells. 24250750

    Genome-wide analysis of vitamin D receptor (VDR) binding sites in THP-1 human monocyte-like cells highlighted the interleukin 8 gene, also known as chemokine CXC motif ligand 8 (CXCL8). CXCL8 is a chemotactic cytokine with important functions during acute inflammation as well as in the context of various cancers. The nine genes of the CXCL cluster and the strong VDR binding site close to the CXCL8 gene are insulated from neighboring genes by CCCTC-binding factor (CTCF) binding sites. Only CXCL8, CXCL6 and CXCL1 are expressed in THP-1 cells, but all three are up-regulated primary 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) target genes. Formaldehyde-assisted isolation of regulatory elements sequencing analysis of the whole CXCL cluster demonstrated 1,25(OH)2D3-dependent chromatin opening exclusively for the VDR binding site. In differentiated THP-1 cells the CXCL8 gene showed a 33-fold higher basal expression, but is together with CXCL6 and CXCL1 still a primary 1,25(OH)2D3 target under the control of the same genomic VDR binding site. In summary, both in undifferentiated and differentiated THP-1 cells the genes CXCL8, CXCL6 and CXCL1 are under the primary control of 1,25(OH)2D3 and its receptor VDR. Our observation provides further evidence for the immune-related functions of vitamin D.
    Tipo de documento:
    Referencia
    Referencia del producto:
    12-370
    Nombre del producto:
    Normal Rabbit IgG
  • Cellular and 3D optical coherence tomography assessment during the initiation and progression of retinal degeneration in the Ccl2 Cx3cr1-deficient mouse. 21854772

    Retinal pathologies common to human eye diseases, including abnormal retinal pigment epithelial (RPE) cells, drusen-like accumulation, photoreceptor atrophy, and choroidal neovascularization, have been reported in the Ccl2/Cx3cr1-deficient mouse. The Ccl2 gene encodes the pro-inflammatory chemokine CCL2 (MCP-1), which is responsible for chemotactic recruitment of monocyte-derived macrophages to sites of inflammation. The Cx3cr1 gene encodes the fractalkine receptor, CX3CR1, and is required for accumulation of monocytes and microglia recruited via CCL2. Chemokine-mediated inflammation is implicated in retinal degenerative diseases such as diabetic retinopathy, age-related macular degeneration, retinitis pigmentosa, and uveoretinitis, and proper chemokine signaling from the RPE, Müller glia, and astrocytes is necessary to regulate leukocyte trafficking. Therefore, this mouse, possessing aberrant chemokine signaling coupled with retinal degenerative pathologies, presents an ideal opportunity to investigate the effect of altered signaling on retinal homeostasis and photoreceptor degeneration. Since this mouse is a recent development, more data covering the onset, location, and progression rate of pathologies is needed. In the present study we establish these parameters and show two photoreceptor cell death processes. Our observations of decreased glutamine synthetase and increased glial fibrillary acidic protein suggest that Müller cells respond very early within regions where lesions are forming. Finally, we suggest that retinal angiomatous proliferation contributes to pathological angiogenesis in this Ccl2/Cx3cr1-deficient mouse.Copyright © 2011 Elsevier Ltd. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5804
    Nombre del producto:
    Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
  • Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. 22028446

    Embryo implantation requires synchronized dialogue between the receptive endometrium and activated blastocyst via locally produced soluble mediators. During the midsecretory (MS) phase of the menstrual cycle, increased glandular secretion into the uterine lumen contains important mediators that modulate the endometrium and support the conceptus during implantation. This study aimed first to identify the growth factor and cytokine profile of human uterine fluid from fertile women during the midproliferative (MP; nonreceptive) and MS (receptive) phases of the cycle, and from women with unexplained infertility during the MS phase. The second aim was to determine important functions of endometrial secretions for embryo implantation. Analysis of uterine fluid using quantitative Luminex assays revealed the presence of over 30 cytokines and growth factors, of which eight [platelet-derived growth factor-AA, TNF-B, soluble IL-2 receptor-A, Fms-like tyrosine kinase 3 ligand, soluble CD40 ligand, IL-7, interferon-A2, and chemokine (C-X-C motif) ligand 1-3] were previously unknown in human uterine fluid. Comparison of the fertile MP, MS, and infertile MS cohorts revealed vascular endothelial growth factor (VEGF) levels are significantly reduced in uterine fluid during the MS phase in women with unexplained infertility compared with fertile women. Functional studies demonstrated that culturing mouse embryos with either MS-phase uterine fluid from fertile women or recombinant human VEGF significantly enhanced blastocyst outgrowth. Furthermore, treatment of human endometrial epithelial cells with uterine fluid or recombinant human VEGF-A significantly increased endometrial epithelial cell adhesion. Taken together, our data support the concept that endometrial secretions, including VEGF, play important roles during implantation. Identifying the soluble mediators in human uterine fluid and their actions during implantation provides insight into interactions essential for establishing pregnancy, fertility markers, and infertility treatment options.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ECM105
    Nombre del producto:
    Millicoat™ Human Collagen Type IV Coated Strips (96-Wells)
  • A novel approach for the derivation of putative primordial germ cells and sertoli cells from human embryonic stem cells. 18845765

    Using human embryonic stem cells (hESCs), we describe a novel method for the rapid derivation and enrichment of cells that are comparable to primordial germ cells (PGCs) and Sertoli cells. The methodology described is based on modest changes to the growth conditions commonly used to expand hESCs and does not require genetic manipulation or complex three-dimensional culture. Remarkably, we have determined that simply reducing the size of cultured ESC colonies and manipulating the number of feeding cycles, results in the rapid emergence of cells that are comparable to migratory PGCs. Importantly, these cells can be monitored and purified on the basis of the expression of the chemokine receptor CXCR4. Under more stringent differentiating conditions these cells mature and upregulate the expression of specific germ cell markers. Importantly, this process is accompanied by the development of Sertoli-like support cells. Such cells normally provide trophic support and immunoprotection to developing germ cells and may have significant clinical utility in the prevention of graft rejection. The putative Sertoli-germ cell cocultures generated in this study may ultimately be developed to study and manipulate interactions and processes involved in human gametogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • P2Y6 receptor contributes to neutrophil recruitment to inflamed intestinal mucosa by increasing CXC chemokine ligand 8 expression in an AP-1-dependent manner in epithelia ... 22095787

    Inflammatory bowel diseases are characterized by the presence of CXCL8 at the site of lesions resulting in neutrophil recruitment and loss of tissue functions. We report that P2Y(6) receptor activation stimulates CXCL8 expression and release by intestinal epithelial cells (IECs). In this context, we investigated if uridine 5'-diphosphate (UDP) enemas stimulate neutrophil recruitment to the mucosa of mice suffering from colitis-like disease and we characterized the signaling events linking P2Y(6) to CXCL8 expression in IEC.Neutrophil recruitment was monitored by immunofluorescence and FACS analysis. Expression of Cxcl1, a mouse functional homolog of CXCL8, was determined by quantitative real-time polymerase chain reaction (qPCR). Pharmacological inhibitors and interfering RNAs were used to characterize the signaling pathway. The outcomes of these treatments on protein phosphorylation and on CXCL8 expression were characterized by western blots, qPCR, luciferase, and chromatin immunoprecipitation (ChIP) assays.Mutation of the AP-1 site in the CXCL8 core promoter abolished the UDP-stimulating effect. The c-fos/c-jun dimer was identified as the AP-1 complex regulating CXCL8 in response to UDP stimulation. Regulation of CXCL8 expression by P2Y(6) required PKCδ activation upstream of the signaling pathway composed of MEK1/2-ERK1/2 and c-fos. UDP administration to mice suffering from colitis-like disease increased the number of neutrophil infiltrating the mucosa, correlating with Cxcl1 increased expression in IEC and the severity of inflammation.This study not only describes the P2Y(6) signaling mechanism regulating CXCL8 expression in IEC, but it also illustrates the potential of targeting P2Y(6) to reduce intestinal inflammation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • The NLR adaptor ASC/PYCARD regulates DUSP10, mitogen-activated protein kinase (MAPK), and chemokine induction independent of the inflammasome. 21487011

    ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc(-/-) but not Nlrp3(-/-), Nlrc4(-/-), or Casp1(-/-) macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB374
    Nombre del producto:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5