Millipore Sigma Vibrant Logo
 

cytokines


2478 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,633)
  • (537)
  • (25)
  • (19)
  • (7)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Requirement of serine phosphorylation for formation of STAT-promoter complexes. 7701321

    Members of the interleukin-6 family of cytokines bind to and activate receptors that contain a common subunit, gp130. This leads to the activation of Stat3 and Stat1, two cytoplasmic signal transducers and activators of transcription (STATs), by tyrosine phosphorylation. Serine phosphorylation of Stat3 was constitutive and was enhanced by signaling through gp130. In cells of lymphoid and neuronal origins, inhibition of serine phosphorylation prevented the formation of complexes of DNA with Stat3-Stat3 but not with Stat3-Stat1 or Stat1-Stat1 dimers. In vitro serine dephosphorylation of Stat3 also inhibited DNA binding of Stat3-Stat3. The requirement of serine phosphorylation for Stat3-Stat3.DNA complex formation was inversely correlated with the affinity of Stat3-Stat3 for the binding site. Thus, serine phosphorylation appears to enhance or to be required for the formation of stable Stat3-Stat3.DNA complexes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Osteopontin regulates actin cytoskeleton and contributes to cell proliferation in primary erythroblasts. 18174176

    Erythropoietin and stem cell factor are the key cytokines that regulate early stages of erythroid differentiation. However, it remains undetermined whether additional cytokines also play a role in the differentiation program. Here, we report that osteopontin (OPN) is highly expressed and secreted by erythroblasts during differentiation. We also demonstrate that OPN-deficient human and mouse erythroblasts exhibit defects in F-actin filaments, and addition of exogenous OPN to OPN-deficient erythroblasts restored the F-actin filaments in these cells. Furthermore, our studies demonstrate that OPN contributes to erythroblast proliferation. OPN knock-out male mice exhibit lower hematocrit and hemoglobin levels compared with their wild-type counterparts. We also show that OPN mediates phosphorylation or activation of multiple proteins including Rac-1 GTPase and the actin-binding protein, adducin, in human erythroblasts. In addition, we show that the OPN effects include regulation of intracellular calcium in human erythroblasts. Finally, we demonstrate that human erythroblasts express CD44 and integrins beta1 and alpha4, three known receptors for OPN, and that the integrin beta1 receptor is involved in transmitting the proliferative signal. Together these results provide evidence for signal transduction by OPN and contribution to multiple functions during the erythroid differentiation program in human and mouse.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-587
  • T cell Ig and mucin domain-containing protein 3 is recruited to the immune synapse, disrupts stable synapse formation, and associates with receptor phosphatases. 24337741

    CD8(+) CTLs are adept at killing virally infected cells and cancer cells and releasing cytokines (e.g., IFN-γ) to aid this response. However, during cancer and chronic viral infections, such as with HIV, this CTL response is progressively impaired due to a process called T cell exhaustion. Previous work has shown that the glycoprotein T cell Ig and mucin domain-containing protein 3 (Tim-3) plays a functional role in establishing T cell exhaustion. Tim-3 is highly upregulated on virus and tumor Ag-specific CD8(+) T cells, and antagonizing Tim-3 helps restore function of CD8(+) T cells. However, very little is known of how Tim-3 signals in CTLs. In this study, we assessed the role of Tim-3 at the immunological synapse as well as its interaction with proximal TCR signaling molecules in primary human CD8(+) T cells. Tim-3 was found within CD8(+) T cell lipid rafts at the immunological synapse. Blocking Tim-3 resulted in a significantly greater number of stable synapses being formed between Tim-3(hi)CD8(+) T cells and target cells, suggesting that Tim-3 plays a functional role in synapse formation. Further, we confirmed that Tim-3 interacts with Lck, but not the phospho-active form of Lck. Finally, Tim-3 colocalizes with receptor phosphatases CD45 and CD148, an interaction that is enhanced in the presence of the Tim-3 ligand, galectin-9. Thus, Tim-3 interacts with multiple signaling molecules at the immunological synapse, and characterizing these interactions could aid in the development of therapeutics to restore Tim-3-mediated immune dysfunction.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-321
    Nombre del producto:
    Anti-Phosphotyrosine Antibody, clone 4G10®
  • Bone fracture exacerbates murine ischemic cerebral injury. 23438676

    Bone fracture increases alarmins and proinflammatory cytokines in the blood, and provokes macrophage infiltration and proinflammatory cytokine expression in the hippocampus. We recently reported that stroke is an independent risk factor after bone surgery for adverse outcome; however, the impact of bone fracture on stroke outcome remains unknown. We tested the hypothesis that bone fracture, shortly after ischemic stroke, enhances stroke-related injuries by augmenting the neuroinflammatory response.Tibia fracture (bone fracture) was induced in mice one day after permanent occlusion of the distal middle cerebral artery (stroke). High-mobility-group box chromosomal protein-1 (HMGB1) was tested to mimic the bone fracture effects. HMGB1 neutralizing antibody and clodrolip (macrophage depletion) were tested to attenuate the bone fracture effects. Neurobehavioral function (n = 10), infarct volume, neuronal death, and macrophages/microglia infiltration (n = 6-7) were analyzed after 3 days.We found that mice with both stroke and bone fracture had larger infarct volumes (mean percentage of ipsilateral hemisphere ± SD: 30 ± 7% vs.12 ± 3%, n = 6, P less than 0.001), more severe neurobehavioral dysfunction, and more macrophages/microglia in the periinfarct region than mice with stroke only. Intraperitoneal injection of HMGB1 mimicked, whereas neutralizing HMGB1 attenuated, the bone fracture effects and the macrophage/microglia infiltration. Depleting macrophages with clodrolip also attenuated the aggravating effects of bone fracture on stroke lesion and behavioral dysfunction.These novel findings suggest that bone fracture shortly after stroke enhances stroke injury via augmented inflammation through HMGB1 and macrophage/microglia infiltration. Interventions to modulate early macrophage/microglia activation could be therapeutic goals to limit the adverse consequences of bone fracture after stroke.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • Complementary phosphorylation sites in the adaptor protein SLP-76 promote synergistic activation of natural killer cells. 22786724

    The cytotoxic effects of natural killer (NK) cells and their ability to secrete cytokines require synergistic signals from specific pairs of co-activation receptors, such as CD314 (also known as NKG2D) and CD244 (2B4), which bind to distinct ligands present on target cells. These signals are required to overcome inhibition mediated by the E3 ubiquitin ligase c-Cbl of the guanine nucleotide exchange factor Vav1, which promotes activation of NK cells. Here, we showed that the adaptor protein SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76 kilodaltons) was required for this synergy and that distinct tyrosine residues in SLP-76 were phosphorylated by each member of a pair of synergistic receptors. Selective phosphorylation of tyrosine 113 or tyrosine 128 in SLP-76 enabled binding of SLP-76 to Vav1. Selective phosphorylation of SLP-76 at these residues was restricted to receptors that stimulated ligand-dependent target cell killing; antibody-dependent stimulation of the Fc receptor CD16 promoted phosphorylation at both sites. Knockdown and reconstitution experiments with SLP-76 mutant proteins showed the distinct role of each tyrosine in the synergistic mobilization of Ca2+, revealing an unexpected degree of selectivity in the phosphorylation of SLP-76 by NK cell co-activation receptors. Together, these data suggest that combined phosphorylation of separate tyrosine residues in SLP-76 forms the basis of synergistic NK cell activation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-807
    Nombre del producto:
    Anti-LAT Antibody
  • Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. 7828849

    Programmed cell death is often triggered by the interaction of some cytokines with their cell surface receptors. Here, we report that gamma interferon (IFN-gamma) induced in HeLa cells a type of cell death that had cytological characteristics of programmed cell death. In this system we have identified two novel genes whose expression was indispensable for the execution of this type of cell death. The rescue was based on positive growth selection of cells after transfection with antisense cDNA expression libraries. The antisense RNA-mediated inactivation of the two novel genes protected the cells from the IFN-gamma-induced cell death but not from the cytostatic effects of the cytokine or from a necrotic type of cell death. One of those genes (DAP-1) is expressed as a single 2.4-kb mRNA that codes for a basic, proline-rich, 15-kD protein. The second is transcribed into a single 6.3-kb mRNA and codes for a unique 160-kD calmodulin-dependent serine/threonine kinase (DAP kinase) that carries eight ankyrin repeats. The expression levels of the two DAP proteins were selectively reduced by the corresponding antisense RNAs. Altogether, it is suggested that these two novel genes are candidates for positive mediators of programmed cell death that is induced by IFN-gamma.
    Tipo de documento:
    Referencia
    Referencia del producto:
    04-431
  • Spermatozoa and seminal plasma induce a greater inflammatory response in the ovine uterus at oestrus than dioestrus. 19698286

    Leukocyte infiltration and increased synthesis of cytokines in response to insemination is considered to enhance reproductive success. The present study investigated the inflammatory response to whole semen, spermatozoa and seminal plasma, with and without the addition of antibiotics, in the ovine uterus at oestrus and dioestrus. Seminal plasma and spermatozoa both contributed to increased IL-8 secretion (P < 0.01) by endometrial epithelial cells and a concurrent infiltration by neutrophils (P < 0.01). Increased GM-CSF secretion (P < 0.01) occurred in response to whole semen and spermatozoa when antibiotics were not used. Macrophages and eosinophils increased (P < 0.05) in the endometrial stroma when antibiotics were not used, and fewer mast cells were detected in the deep endometrial stroma after treatments containing antibiotics (P < 0.05). Neutrophil and IL-8 responses to insemination were greater at oestrus (P < 0.01) than at dioestrus and the GM-CSF response followed a similar trend. Eosinophil numbers were increased at oestrus (P < 0.01) but minimally affected by insemination. More macrophages were located in the superficial endometrial stroma at oestrus. These results indicate that spermatozoa, seminal plasma and possibly bacteria contribute to the post-insemination inflammatory response, and that leukocytes, GM-CSF and IL-8 secretion in the ovine uterus are influenced by ovarian hormones.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1044
    Nombre del producto:
    Anti-Interleukin-8 Antibody, clone 8M6
  • The interferon-gamma-induced murine guanylate-binding protein-2 inhibits rac activation during cell spreading on fibronectin and after platelet-derived growth factor trea ... 20505078

    Exposure of cells to certain cytokines can alter how these same cells respond to later cues from other agents, such as extracellular matrix or growth factors. Interferon (IFN)-gamma pre-exposure inhibits the spreading of fibroblasts on fibronectin. Expression of the IFN-gamma-induced GTPase murine guanylate-binding protein-2 (mGBP-2) can phenocopy this inhibition and small interfering RNA knockdown of mGBP-2 prevents IFN-gamma-mediated inhibition of cell spreading. Either IFN-gamma treatment or mGBP-2 expression inhibits Rac activation during cell spreading. Rac is required for cell spreading. mGBP-2 also inhibits the activation of Akt during cell spreading on fibronectin. mGBP-2 is incorporated into a protein complex containing the catalytic subunit of phosphatidylinositol 3-kinase (PI3-K), p110. The association of mGBP-2 with p110 seems important for the inhibition of cell spreading because S52N mGBP-2, which does not incorporate into the protein complex with p110, is unable to inhibit cell spreading. PI3-K activation during cell spreading on fibronectin was inhibited in the presence of mGBP-2. Both IFN-gamma and mGBP-2 also inhibit cell spreading initiated by platelet-derived growth factor treatment, which is also accompanied by inhibition of Rac activation by mGBP-2. This is the first report of a novel mechanism by which IFN-gamma can alter how cells respond to subsequent extracellular signals, by the induction of mGBP-2.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
  • The relative contribution of mast cell subsets to conjunctival TH2-like cytokines. 11274077

    PURPOSE: To investigate the distribution of the T-helper (TH)2-like cytokines, interleukin (IL)-4, IL-5, IL-6, and IL-13 between mast cell subsets in conjunctival biopsy specimens from normal subjects and those with seasonal allergic conjunctivitis (SAC) during and outside of the grass pollen season. METHODS: Sequential and double in situ hybridization (ISH) and immunohistochemistry (IHC) were performed on thin sections of human conjunctiva to determine the colocalization of the immunoreactivity of IL-4, IL-5, IL-6, and IL-13 to mast cell subsets in normal subjects and subjects with atopy and to detect IL-4 mRNA in conjunctival mast cells. RESULTS: More than 90% of IL-4+-immunoreactive cells were observed to be mast cells in conjunctival biopsy specimens from all patient groups. The majority of IL-5+, IL-6+, and IL-13+ cells were also noted to be mast cells for each group. IL-4 preferentially colocalized to the tryptase+-chymase+ mast cell phenotype (MC(TC)) with MC(TC) cells comprising 93.3% of cytokine+ mast cells in symptomatic SAC (P = 0.0017), 89.2% in asymptomatic SAC (P = 0.0008), and 77.8% in normal subjects (P = 0.0472). IL-13 appeared to colocalize preferentially to the MC(TC) phenotype and IL-5 and IL-6 to the MC(T) phenotype. ISH showed that 75.8% of mast cells in normal subjects, 78.7% in subjects with symptomatic SAC, and 18.7% in subjects with asymptomatic SAC expressed mRNA for IL-4. CONCLUSIONS: Conjunctival mast cells are an important source of IL-4, IL-5, IL-6, and IL-13 immunoreactivity, with preferential colocalization of IL-4 and IL-13 on the MC(TC) subset and IL-5 and IL-6 to the MC(T) subset. This evidence suggests that differences in protease phenotype may also reflect functional differences evidenced by the different patterns of cytokine distribution.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1254
    Nombre del producto:
    Anti-Chymase Antibody, clone B7
  • The Journal of clinical investigation 9119995

    The expression of proinflammatory and immunoregulatory cytokines rapidly increases in the lungs after hemorrhage, and such alterations contribute to the frequent development of acute inflammatory lung injury in this setting. Blood loss also produces elevations in catecholamine concentrations in the pulmonary and systemic circulation. In the present experiments, we used alpha- and beta-adrenergic receptor blockade to examine in vivo interactions between hemorrhage-induced adrenergic stimulation and pulmonary cytokine expression. Treatment of mice with the alpha-adrenergic receptor antagonist phentolamine prevented not only the elevation in mRNA levels of IL-1beta, TNF-alpha, and TGF-beta1, the increase in IL-1beta protein, but also the activation of nuclear factor (NF)-KB and cyclic AMP response element binding protein, which occurred in lung cells of untreated animals during the first hour after hemorrhage. In contrast, treatment before hemorrhage with the beta-adrenergic receptor antagonist propranolol was associated with increases in mRNA levels for IL-1beta, TNF-alpha, and TGF-beta1, which were greater than those present in untreated hemorrhaged mice, and did not prevent hemorrhage-associated increases in lung IL-1beta protein. Treatment with propranolol prevented hemorrhage-induced phosphorylation of cyclic AMP response element binding protein, but increased hemorrhage-associated activation of NF-KB. These results demonstrate that hemorrhage initially increases pulmonary cytokine expression through alpha- but not beta-adrenergic stimulation, and suggest that such alpha-adrenergic-mediated effects occur through activation of the transcriptional regulatory factor NF-kappaB.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-519
    Nombre del producto:
    Anti-phospho-CREB (Ser133) Antibody