Millipore Sigma Vibrant Logo
 

ips


2675 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (678)
  • (97)
  • (36)
  • (12)
  • (7)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Simple generation of human induced pluripotent stem cells using poly-beta-amino esters as the non-viral gene delivery system. 21285354

    Reprogramming of somatic cells to induced pluripotent stem (iPS) cells can be achieved by the delivery of a combination of transcription factors, including Oct4, Sox2, Klf4, and c-Myc. Retroviral and lentiviral vectors are commonly used to express these four reprogramming factors separately and obtain reprogrammed iPS cells. Although efficient and reproducible, these approaches involve the time-consuming and labor-intensive production of retroviral or lentiviral particles together with a high risk of working with potentially harmful viruses overexpressing potent oncogenes, such as c-Myc. Here, we describe a simple method to produce bona fide iPS cells from human fibroblasts using poly-β-amino esters as the transfection reagent for the delivery of a single CAG-driven polycistronic plasmid expressing Oct4, Sox2, Klf4, c-Myc, and a GFP reporter gene (OSKMG). We demonstrate for the first time that poly-β-amino esters can be used to deliver a single polycistronic reprogramming vector into human fibroblasts, achieving significantly higher transfection efficiency than with conventional transfection reagents. After a protocol of serial transfections using poly-β-amino esters, we report a simple methodology to generate human iPS cells from human fibroblasts avoiding the use of viral vectors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4381
    Nombre del producto:
    Anti-TRA-1-81 Antibody, clone TRA-1-81
  • The Ink4/Arf locus is a barrier for iPS cell reprogramming. 19668188

    The mechanisms involved in the reprogramming of differentiated cells into induced pluripotent stem (iPS) cells by the three transcription factors Oct4 (also known as Pou5f1), Klf4 and Sox2 remain poorly understood. The Ink4/Arf locus comprises the Cdkn2a-Cdkn2b genes encoding three potent tumour suppressors, namely p16(Ink4a), p19(Arf) and p15(Ink4b), which are basally expressed in differentiated cells and upregulated by aberrant mitogenic signals. Here we show that the locus is completely silenced in iPS cells, as well as in embryonic stem (ES) cells, acquiring the epigenetic marks of a bivalent chromatin domain, and retaining the ability to be reactivated after differentiation. Cell culture conditions during reprogramming enhance the expression of the Ink4/Arf locus, further highlighting the importance of silencing the locus to allow proliferation and reprogramming. Indeed, the three factors together repress the Ink4/Arf locus soon after their expression and concomitant with the appearance of the first molecular markers of 'stemness'. This downregulation also occurs in cells carrying the oncoprotein large-T, which functionally inactivates the pathways regulated by the Ink4/Arf locus, thus indicating that the silencing of the locus is intrinsic to reprogramming and not the result of a selective process. Genetic inhibition of the Ink4/Arf locus has a profound positive effect on the efficiency of iPS cell generation, increasing both the kinetics of reprogramming and the number of emerging iPS cell colonies. In murine cells, Arf, rather than Ink4a, is the main barrier to reprogramming by activation of p53 (encoded by Trp53) and p21 (encoded by Cdkn1a); whereas, in human fibroblasts, INK4a is more important than ARF. Furthermore, organismal ageing upregulates the Ink4/Arf locus and, accordingly, reprogramming is less efficient in cells from old organisms, but this defect can be rescued by inhibiting the locus with a short hairpin RNA. All together, we conclude that the silencing of Ink4/Arf locus is rate-limiting for reprogramming, and its transient inhibition may significantly improve the generation of iPS cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Characterization of induced tissue-specific stem cells from pancreas by a synthetic self-replicative RNA. 30120295

    Induced pluripotent stem (iPS) cells have significant implications for overcoming most of the ethical issues associated with embryonic stem (ES) cells. Furthermore, our recent study demonstrated the generation of induced tissue-specific stem (iTS) cells by transient overexpression of the reprogramming factors using a plasmid combined with tissue-specific selection. In this study, we were able to generate RNA-based iTS cells that utilize a single, synthetic, self-replicating VEE-RF RNA replicon expressing four reprogramming factors (OCT4, KLF4, SOX2, and GLIS1). A single VEE-RF RNA transfection into mouse pancreatic tissue resulted in efficient generation of iTS cells from pancreas (iTS-P cells) with genetic markers of endoderm and pancreatic progenitors and differentiation into insulin-producing cells more efficiently than ES cells. Subcutaneous transplantation of iTS-P cells into immunodeficient mice resulted in no teratoma formation. Bisulfite genomic sequencing demonstrated that the promoters of Oct4 and Nanog remained partially methylated in iTS-P cells. We compared the global gene-expression profiles of ES cells, iTS-P cells, and pancreatic islets. Microarray analyses confirmed that the iTS-P cells were similar but not identical to ES cells compared with islets. These data suggest that iTS-P cells are cells that inherit numerous components of epigenetic memory from pancreas cells and acquire self-renewal potential. The generation of iTS cells may have important implications for the clinical application of stem cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. 21499256

    Human induced pluripotent stem (iPS) cells are remarkably similar to embryonic stem (ES) cells, but recent reports indicate that there may be important differences between them. We carried out a systematic comparison of human iPS cells generated from hepatocytes (representative of endoderm), skin fibroblasts (mesoderm) and melanocytes (ectoderm). All low-passage iPS cells analysed retain a transcriptional memory of the original cells. The persistent expression of somatic genes can be partially explained by incomplete promoter DNA methylation. This epigenetic mechanism underlies a robust form of memory that can be found in iPS cells generated by multiple laboratories using different methods, including RNA transfection. Incompletely silenced genes tend to be isolated from other genes that are repressed during reprogramming, indicating that recruitment of the silencing machinery may be inefficient at isolated genes. Knockdown of the incompletely reprogrammed gene C9orf64 (chromosome 9 open reading frame 64) reduces the efficiency of human iPS cell generation, indicating that somatic memory genes may be functionally relevant during reprogramming.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Characterization of embryonic stem-like cells derived from HEK293T cells through miR302/367 expression and their potentiality to differentiate into germ-like cells. 24091881

    Human induced pluripotent stem (iPS) cells have great value for regenerative medicine, but are facing problems of low efficiency. MicroRNAs are a recently discovered class of 19-25 nt small RNAs that negatively target mRNAs. miR302/367 cluster has been demonstrated to reprogram mouse and human somatic cells to iPS cells without exogenous transcription factors, however, the repetition and differentiation potentiality of miR302/367-induced pluripotent stem (mirPS) cells need to be improved. Here, we showed overexpression of miR302/367 cluster reprogrammed human embryonic kidney 293T cells into mirPS cells in serum-free N2B27-based medium. The mirPS cells had similar morphology with embryonic stem cells, and expressed pluripotent markers including Oct4, Sox2, Klf4, and Nanog. In addition, through formation of embryoid bodies, various cells and tissues from three germ layers could be determined. Moreover, we examined the potential of mirPS cells differentiating into germ cells both in vitro and in vivo. Taken together, these data might provide a new source of cells and technique for the investigation of the mechanisms underlying reprogramming and pluripotency.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Establishment of induced pluripotent stem cells from aged mice using bone marrow-derived myeloid cells. 21228011

    If induced pluripotent stem (iPS) cells are to be used to treat damaged tissues or repair organs in elderly patients, it will be necessary to establish iPS cells from their tissues. To determine the feasibility of using this technology with elderly patients, we asked if it was indeed possible to establish iPS cells from the bone marrow (BM) of aged mice. BM cells from aged C57BL/6 mice carrying the green fluorescence protein (GFP) gene were cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) for 4 days. Four factors (Oct3/4, Sox2, Klf4 and c-Myc) were introduced into the BM-derived myeloid (BM-M) cells. The efficiency of generating iPS cells from aged BM cultured in GM-CSF was low. However, we succeeded in obtaining BM-M-iPS cells from aged C57BL/6 mice, which carried GFP. Our BM-M-iPS cells expressed SSEA-1 and Pou5f1 and were positive for alkaline phosphatase staining. The iPS cells did make teratoma with three germ layers following injection into syngeneic C57BL/6 mice, and can be differentiated to three germ layers in vitro. By co-culturing with OP9, the BM-M-iPS cells can be differentiated to the myeloid lineage. The differentiated BM-M-iPS cells proliferated well in the presence of GM-CSF, and lost expression of Nanog and Pou5f1, at least in part, due to methylation of their promoters. On the contrary, Tnf and Il1b gene expression was upregulated and their promoters were hypomethylated.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCR004
    Nombre del producto:
    Alkaline Phosphatase Detection Kit
  • Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. 19483674

    The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells and provided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold great therapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect, somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Differentiation of induced pluripotent stem cells into functional oligodendrocytes. 21438010

    The technology to generate autologous pluripotent stem cells (iPS cells) from almost any somatic cell type has brought various cell replacement therapies within clinical research. Besides the challenge to optimize iPS protocols to appropriate safety and GMP levels, procedures need to be developed to differentiate iPS cells into specific fully differentiated and functional cell types for implantation purposes. In this article, we describe a protocol to differentiate mouse iPS cells into oligodendrocytes with the aim to investigate the feasibility of IPS stem cell-based therapy for demyelinating disorders, such as multiple sclerosis. Our protocol results in the generation of oligodendrocyte precursor cells (OPCs) that can develop into mature, myelinating oligodendrocytes in-vitro (co-culture with DRG neurons) as well as in-vivo (after implantation in the demyelinated corpus callosum of cuprizone-treated mice). We report the importance of complete purification of the iPS-derived OPC suspension to prevent the contamination with teratoma-forming iPS cells. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Effective vitrification of human induced pluripotent stem cells using carboxylated ε-poly-l-lysine. 21621529

    Derivation of human induced pluripotent stem (iPS) cells could enable their widespread application in future. Establishment of highly efficient and reliable methods for their preservation is a prerequisite for these applications. In this study, we developed a vitrification solution comprising ethylene glycol (EG) and sucrose as well as carboxylated ε-poly-l-lysine (PLL); this solution inhibited devitrification. Human iPS cells were vitrified in 200-μL vitrification solutions comprised 6.5M EG, 0.75 M sucrose and 0 or 10%w/v carboxylated PLL with 65 mol% of the amino groups converted to carboxyl groups [PLL (0.65)] in a cryovial by directly immersing in liquid nitrogen. After warming, attached colony and recovery rates of human iPS cells vitrified by adding PLL (0.65) were significantly higher than those for cells without PLL (0.65) and vitrification solution (DAP213: 2M dimethyl sulfoxide, 1M acetamide and 3M propylene glycol). Furthermore, even after warming at room temperature, attached colony and recovery rates of iPS cells vitrified with PLL (0.65) were reduced to a lesser extent than those vitrified with either DAP213 or EG and sucrose without PLL (0.65). This could be attributed to inhibition of devitrification by PLL (0.65), as differential scanning calorimetry indicated less damage after vitrification with PLL (0.65). In addition, human iPS cells vitrified in the solution with PLL (0.65) had normal karyotypes and maintained undifferentiated states and pluripotency as determined by immunohistochemistry and teratoma formation. Addition of PLL (0.65) successfully vitrified human iPS cells with high efficiency. We believe that this method could aid future applications and increase utility of human iPS cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4303
  • An HDAC2-TET1 switch at distinct chromatin regions significantly promotes the maturation of pre-iPS to iPS cells. 25934799

    The maturation of induced pluripotent stem cells (iPS) is one of the limiting steps of somatic cell reprogramming, but the underlying mechanism is largely unknown. Here, we reported that knockdown of histone deacetylase 2 (HDAC2) specifically promoted the maturation of iPS cells. Further studies showed that HDAC2 knockdown significantly increased histone acetylation, facilitated TET1 binding and DNA demethylation at the promoters of iPS cell maturation-related genes during the transition of pre-iPS cells to a fully reprogrammed state. We also found that HDAC2 competed with TET1 in the binding of the RbAp46 protein at the promoters of maturation genes and knockdown of TET1 markedly prevented the activation of these genes. Collectively, our data not only demonstrated a novel intrinsic mechanism that the HDAC2-TET1 switch critically regulates iPS cell maturation, but also revealed an underlying mechanism of the interplay between histone acetylation and DNA demethylation in gene regulation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™