Select a Size
About This Item
SMILES string
[C]
InChI key
OKTJSMMVPCPJKN-UHFFFAOYSA-N
InChI
1S/C
assay
99.95% trace metals basis
form
glassy, spherical powder
mol wt
Mw 12.011 g/mol
composition
C
particle size
2-12 μm
density
1.8-2.1 g/cm3
application(s)
battery manufacturing
Quality Level
Looking for similar products? Visit Product Comparison Guide
Related Categories
Application
•High-Temperature Applications: as Crucibles, as Furnace Components; as Thermocouple Protection.
•Semiconductor Industry: as Wafer Handling (wafer holders and susceptors); as durable electrode material for plasma etching and ion implantation.
•Biomedical Applications: as load-bearing joints and dental implants; as Scaffold material for Tissue Engineering.
•Other Applications: Antistatic Agent (prevents static electricity buildup in packaging); Molding Materials (precision and glass molding); as Fuel Cell Electrodes.
General description
Features and Benefits
•Electrical Conductivity: Excellent conductivity (700Scm-1) makes it ideal for electrochemical applications.
•Chemical Inertness: High resistance to chemical reactions enhances durability in harsh environments.
•High-Temperature Resistance and low thermal expansion: Can withstand temperatures up to 3000°C, suitable for high-temperature applications. •Biocompatibility: Safe for use in biomedical applications, particularly in prosthetics and tissue engineering.
•Tailorable Properties: Customizable properties through heat treatment and surface modifications.
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Regulatory Listings
Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.
484164-VAR: + 484164-50G: + 484164-BULK: + 484164-10G:
jan
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Articles
固体酸化物燃料電池と電解装置は、開発の初期段階にかかわらず、化学エネルギーから電気エネルギーへの変換の可能性を示しています。
シリコンは、既知の材料の中で最も高い容量を有し、比較的低い作動電位を示すなどの利点があることから、リチウムイオン電池用の最も有望な負極材料の1つです。
次世代正極材料および固体電解質として期待されている材料グループを取り上げ、電池性能および安定性向上における界面反応の重要性と、化学分光法や第一原理計算の必要性について紹介します。
Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service