Transmitter inputs to different motoneuron subgroups in the oculomotor and trochlear nucleus in monkey. Zeeh, C; Mustari, MJ; Hess, BJ; Horn, AK Frontiers in neuroanatomy
9
95
2015
Show Abstract
In all vertebrates the eyes are moved by six pairs of extraocular muscles enabling horizontal, vertical and rotatory movements. Recent work showed that each extraocular muscle is controlled by two motoneuronal groups: (1) Motoneurons of singly-innervated muscle fibers (SIF) that lie within the boundaries of motonuclei mediating a fast muscle contraction; and (2) motoneurons of multiply-innervated muscle fibers (MIF) in the periphery of motonuclei mediating a tonic muscle contraction. Currently only limited data about the transmitter inputs to the SIF and MIF motoneurons are available. Here we performed a quantitative study on the transmitter inputs to SIF and MIF motoneurons of individual muscles in the oculomotor and trochlear nucleus in monkey. Pre-labeled motoneurons were immunostained for GABA, glutamate decarboxylase, GABA-A receptor, glycine transporter 2, glycine receptor 1, and vesicular glutamate transporters 1 and 2. The main findings were: (1) the inhibitory control of SIF motoneurons for horizontal and vertical eye movements differs. Unlike in previous primate studies a considerable GABAergic input was found to all SIF motoneuronal groups, whereas a glycinergic input was confined to motoneurons of the medial rectus (MR) muscle mediating horizontal eye movements and to those of the levator palpebrae (LP) muscle elevating the upper eyelid. Whereas SIF and MIF motoneurons of individual eye muscles do not differ numerically in their GABAergic, glycinergic and vGlut2 input, vGlut1 containing terminals densely covered the supraoculomotor area (SOA) targeting MR MIF motoneurons. It is reasonable to assume that the vGlut1 input affects the near response system in the SOA, which houses the preganglionic neurons mediating pupillary constriction and accommodation and the MR MIF motoneurones involved in vergence. | | 26257611
 |
The anatomical identification of saccadic omnipause neurons in the rat brainstem. M Hittinger,A K E Horn Neuroscience
210
2012
Show Abstract
Omnipause neurons (OPNs) represent a crucial component for the generation of saccadic eye movements. They inhibit saccadic premotor neurons in the paramedian pontine reticular formation (PPRF) as well as in the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF) during the intersaccadic interval. In turn, inhibition of OPNs is a prerequisite in order to generate saccadic eye movements. Although the anatomy of the saccadic system including the OPNs has been extensively studied in primates and cats, no detailed anatomical description of these neurons in rats has been performed so far. The aim of the present study was the identification of putative OPNs in the rat brainstem based on their projection target, localization, and histochemical characteristics. Stereotactic tract-tracer injections into the rostral mesencephalon including the RIMLF in rat resulted in back-labeling of a neuron group adjacent to the midline at the level of traversing fibers of the abducens nerve, which are considered as OPNs lying in the nucleus raphe interpositus. Combined immunohistochemical staining for various markers revealed in these neurons the expression of parvalbumin, chondroitin sulfate proteoglycan, and glycine, but a lack of serotonin. The results of our study demonstrate the striking similarity between individual elements of the premotor saccadic network in rats and primates. The exact knowledge of their location in rats provides a basis for in vitro studies of the OPNs in rat brainstem slices. | | 22441037
 |
Synaptic plasticity in the medial superior olive of hearing, deaf, and cochlear-implanted cats. Natasha N Tirko,David K Ryugo The Journal of comparative neurology
520
2012
Show Abstract
The medial superior olive (MSO) is a key auditory brainstem structure that receives binaural inputs and is implicated in processing interaural time disparities used for sound localization. The deaf white cat, a proven model of congenital deafness, was used to examine how deafness and cochlear implantation affected the synaptic organization at this binaural center in the ascending auditory pathway. The patterns of axosomatic and axodendritic organization were determined for principal neurons from the MSO of hearing, deaf, and deaf cats with cochlear implants. The nature of the synapses was evaluated through electron microscopy, ultrastructure analysis of the synaptic vesicles, and immunohistochemistry. The results show that the proportion of inhibitory axosomatic terminals was significantly smaller in deaf animals when compared with hearing animals. However, after a period of electrical stimulation via cochlear implants the proportion of inhibitory inputs resembled that of hearing animals. Additionally, the excitatory axodendritic boutons of hearing cats were found to be significantly larger than those of deaf cats. Boutons of stimulated cats were significantly larger than the boutons in deaf cats, although not as large as in the hearing cats, indicating a partial recovery of excitatory inputs to MSO dendrites after stimulation. These results exemplify dynamic plasticity in the auditory brainstem and reveal that electrical stimulation through cochlear implants has a restorative effect on synaptic organization in the MSO. | | 22237661
 |
Distribution of plasma membrane-associated syntaxins 1 through 4 indicates distinct trafficking functions in the synaptic layers of the mouse retina. Sherry, DM; Mitchell, R; Standifer, KM; du Plessis, B BMC neuroscience
7
54
2006
Show Abstract
Syntaxins 1 through 4 are SNAP receptor (SNARE) proteins that mediate vesicular trafficking to the plasma membrane. In retina, syntaxins 1 and 3 are expressed at conventional and ribbon synapses, respectively, suggesting that synaptic trafficking functions differ among syntaxin isoforms. To better understand syntaxins in synaptic signaling and trafficking, we further examined the cell- and synapse-specific expression of syntaxins 1 through 4 in the mouse retina by immunolabeling and confocal microscopy.Each isoform was expressed in the retina and showed a unique distribution in the synaptic layers of the retina, with little or no colocalization of isoforms. Syntaxin 1 was present in amacrine cell bodies and processes and conventional presynaptic terminals in the inner plexiform layer (IPL). Syntaxin 2 was present in amacrine cells and their processes in the IPL, but showed little colocalization with syntaxin 1 or other presynaptic markers. Syntaxin 3 was found in glutamatergic photoreceptor and bipolar cell ribbon synapses, but was absent from putative conventional glutamatergic amacrine cell synapses. Syntaxin 4 was localized to horizontal cell processes in the ribbon synaptic complexes of photoreceptor terminals and in puncta in the IPL that contacted dopaminergic and CD15-positive amacrine cells. Syntaxins 2 and 4 often were apposed to synaptic active zones labeled for bassoon.These results indicate that each syntaxin isoform has unique, non-redundant functions in synaptic signaling and trafficking. Syntaxins 1 and 3 mediate presynaptic transmitter release from conventional and ribbon synapses, respectively. Syntaxins 2 and 4 are not presynaptic and likely mediate post-synaptic trafficking. | Mouse | 16839421
 |
Glycine taken up through GLYT1 and GLYT2 heterotransporters into glutamatergic axon terminals of mouse spinal cord elicits release of glutamate by homotransporter reversal and through anion channels. Luca Raiteri, Sara Stigliani, Antonella Siri, Mario Passalacqua, Edon Melloni, Maurizio Raiteri, Giambattista Bonanno Biochemical pharmacology
69
159-68
2005
Show Abstract
Glycine concentration-dependently elicited [3H]D-aspartate ([3H]D-ASP) release from superfused mouse spinal cord synaptosomes. Glycine effect was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was prevented by the glycine transporter blocker glycyldodecylamide. Glycine also evoked release of endogenous glutamate, which was sensitive to glycyldodecylamide and abolished in low-Na+ medium. Experiments with purified synaptosomes and gliasomes show that the glycine-evoked [3H]D-ASP release largely originates from glutamatergic nerve terminals. The glycine-evoked [3H]D-ASP release was halved by NFPS, a selective blocker of GLYT1 transporters, or by Org 25543, a selective GLYT2 blocker, and almost abolished by a mixture of the two, suggesting that activation of GLYT1 and GLYT2 present on glutamatergic terminals triggers the release of [3H]D-ASP. Accordingly, confocal microscopy experiments show localization of GLYT1 and GLYT2 in purified synaptosomes immuno-stained for the vesicular glutamate transporter vGLUT1. The glycine effect was independent of extra- and intraterminal Ca2+ ions. It was partly inhibited by the glutamate transporter blocker DL-TBOA and largely prevented by the anion channel blockers niflumic acid and NPPB. To conclude, transporters for glycine (GLYT1 or/and GLYT2) and for glutamate coexist on the same spinal cord glutamatergic terminals. Activation of glycine heterotransporters elicits glutamate release partly by homotransporter reversal and largely through anion channels. | | 15588724
 |