Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

inhibitors+or++small+molecules


50 Results Advanced Search  
Showing
Products (0)
Documents (35)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Small-molecule inhibitors of the protein methyltransferase SET7/9 identified in a high-throughput screen. 22772057

    Aberrant expression of chromatin-modifying enzymes (CMEs) is associated with a range of human diseases, including cancer. CMEs are now an important target area in drug discovery. Although the role that histone and protein (lysine) methyltransferases (PMTs) play in the regulation of transcription and cell growth is increasingly recognized, few small-molecule inhibitors of this class of enzyme have been reported. Here we describe an assay suitable for primary compound screening for the identification of PMT inhibitors. The assay followed the methylation of histones in the presence of the PMT SET7/9 and the radioactive cofactor S-adenosyl-methionine using scintillating microplates (FlashPlate) and was used to screen approximately 65 000 compounds (% coefficient of variation = 10%; Z' = 0.6). The hits identified from a library of more than 63 000 diverse small molecules included a series of rhodanine compounds with micromolar activity. A screen of the National Cancer Institute Diversity Set (2000 compounds) identified an orsein derivative that inhibited SET7/9 (~20 µM) and showed modest growth inhibition associated with the expected cellular phenotype of reduced histone methylation in a human tumor cell line. The assay represents a useful tool for the identification of inhibitors of PMT activity.
    Document Type:
    Reference
    Product Catalog Number:
    06-599
    Product Catalog Name:
    Anti-acetyl-Histone H3 Antibody
  • Identification of small molecule inhibitors of Jumonji AT-rich interactive domain 1B (JARID1B) histone demethylase by a sensitive high throughput screen. 23408432

    JARID1B (also known as KDM5B or PLU1) is a member of the JARID1 family of histone lysine demethylases responsible for the demethylation of trimethylated lysine 27 in histone H3 (H3K4me3), a mark for actively transcribed genes. JARID1B is overexpressed in several cancers, including breast cancer, prostate cancer, and lung cancer. In addition, JARID1B is required for mammary tumor formation in syngeneic or xenograft mouse models. JARID1B-expressing melanoma cells are associated with increased self-renewal character. Therefore, JARID1B represents an attractive target for cancer therapy. Here we characterized JARID1B using a homogeneous luminescence-based demethylase assay. We then conducted a high throughput screen of over 15,000 small molecules to identify inhibitors of JARID1B. From this screen, we identified several known JmjC histone demethylase inhibitors, including 2,4-pyridinedicarboxylic acid and catechols. More importantly, we identified several novel inhibitors, including 2-4(4-methylphenyl)-1,2-benzisothiazol-3(2H)-one (PBIT), which inhibits JARID1B with an IC50 of about 3 μm in vitro. Consistent with this, PBIT treatment inhibited removal of H3K4me3 by JARID1B in cells. Furthermore, this compound inhibited proliferation of cells expressing higher levels of JARID1B. These results suggest that this novel small molecule inhibitor is a lead compound that can be further optimized for cancer therapy.
    Document Type:
    Reference
    Product Catalog Number:
    07-452
    Product Catalog Name:
    Anti-dimethyl-Histone H3 (Lys27) Antibody
  • BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. 29533782

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are selectively active in cells with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1, BRCA2, and other pathway members. We sought small molecules that induce HRD in HR-competent cells to induce synthetic lethality with PARPi and extend the utility of PARPi. We demonstrated that inhibition of bromodomain containing 4 (BRD4) induced HRD and sensitized cells across multiple tumor lineages to PARPi regardless of BRCA1/2, TP53, RAS, or BRAF mutation status through depletion of the DNA double-stand break resection protein CtIP (C-terminal binding protein interacting protein). Importantly, BRD4 inhibitor (BRD4i) treatment reversed multiple mechanisms of resistance to PARPi. Furthermore, PARPi and BRD4i are synergistic in multiple in vivo models.
    Document Type:
    Reference
    Product Catalog Number:
    17-10086
    Product Catalog Name:
    EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit
  • Developing Spindlin1 small-molecule inhibitors by using protein microarrays. 28504676

    The discovery of inhibitors of methyl- and acetyl-binding domains has provided evidence for the 'druggability' of epigenetic effector molecules. The small-molecule probe UNC1215 prevents methyl-dependent protein-protein interactions by engaging the aromatic cage of MBT domains and, with lower affinity, Tudor domains. Using a library of tagged UNC1215 analogs, we screened a protein-domain microarray of human methyllysine effector molecules to rapidly detect compounds with new binding profiles with either increased or decreased specificity. Using this approach, we identified a compound (EML405) that acquired a novel interaction with the Tudor-domain-containing protein Spindlin1 (SPIN1). Structural studies facilitated the rational synthesis of SPIN1 inhibitors with increased selectivity (EML631-633), which engage SPIN1 in cells, block its ability to 'read' H3K4me3 marks and inhibit its transcriptional-coactivator activity. Protein microarrays can thus be used as a platform to 'target-hop' and identify small molecules that bind and compete with domain-motif interactions.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. 14695145

    PURPOSE: Rho family members are small GTPases that are known to regulate malignant transformation and motility of cancer cells. The activities of Rhos are regulated by molecules such as guanine nucleotide dissociation inhibitors (GDIs). This study determined the levels of expression and the distribution of Rho-A, -B, -C, and -G, and Rho-6, -7, and -8, as well as Rho-GDI-beta, and Rho-GDI-gamma, in breast cancer and assessed their prognostic value. EXPERIMENTAL DESIGN: The distribution and location of Rhos and RhoGDIs were assessed using immunohistochemical staining of frozen sections. The levels of transcripts of these molecules were determined using a real-time quantitative PCR. Levels of expression were analyzed against nodal involvement and distant metastasis, grade, and survival over a 6-year follow-up period. RESULTS: The levels of Rho-C, Rho-6, and Rho-G were significantly higher in breast cancer tissues (n = 120) than in background normal tissues (n = 32). However, the level of Rho-A and -B and rho-7 and -8 was found to be similar in tumor and normal tissues. Immunohistochemical staining revealed the high level of staining of Rho-C protein in tumor cells. The levels of Rho-GDI-gamma transcripts were found to be significantly lower in tumor tissues than in normal tissues (P < 0.05 and P < 0.001, respectively). Node-positive tumors have significantly higher levels of Rho-C and Rho-G, and lower levels of Rho-GDI and Rho-GDI-gamma transcripts, than do node-negative tumors. Significantly higher levels of Rho-C and Rho-G were seen in patients who died of breast cancer than in those who remained disease free. Patients with recurrent disease, with metastasis or who died of breast cancer, also exhibited higher levels of Rho-6 but lower levels of Rho-GDI-gamma. Higher-grade tumors were also associated with low levels of Rho-GDI and Rho-GDI-gamma. CONCLUSIONS: Raised levels of Rho-C, Rho-G and Rho-6 and reduced expression of Rho-GDI and -GDI-gamma in breast tumor tissues are correlated with the nodal involvement and metastasis. This suggests that the expression of Rhos and Rho-GDIs in breast cancer is unbalanced and that this disturbance has clinical significance in breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. 22611017

    Inhibiting angiogenesis has become an important therapeutic strategy for cancer treatment but, like other current targeted therapies, benefits experienced for late-stage cancers can be curtailed by inherent refractoriness or by acquired drug resistance, requiring a need for better mechanistic understanding of such effects. Numerous preclinical studies have demonstrated that VEGF pathway inhibitors suppress primary tumour growth and metastasis. However, it has been recently reported that short-term VEGF and VEGFR inhibition can paradoxically accelerate tumour invasiveness and metastasis in certain models. Here we comprehensively compare the effects of both antibody and small molecule receptor tyrosine kinase (RTK) inhibitors targeting the VEGF-VEGFR pathway, using short-term therapy in various mouse models of metastasis. Our findings demonstrate that antibody inhibition of VEGF pathway molecules does not promote metastasis, in contrast to selected small molecule RTK inhibitors at elevated-therapeutic drug dosages. In particular, a multi-targeted RTK inhibitor, sunitinib, which most profoundly potentiated metastasis, also increased lung vascular permeability and promoted tumour cell extravasation. Mechanistically, sunitinib, but not anti-VEGF treatment, attenuated endothelial barrier function in culture and caused a global inhibition of protein tyrosine phosphorylation, including molecules important for maintaining endothelial cell-cell junctions. Together these findings indicate that, rather than a specific consequence of inhibiting the VEGF signalling pathway, pharmacological inhibitors of the VEGF pathway can have dose- and drug class-dependent side-effects on the host vasculature. These findings also advocate for the continued identification of mechanisms of resistance to anti-angiogenics and for therapy development to overcome it. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Document Type:
    Reference
    Product Catalog Number:
    AB5320
    Product Catalog Name:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Antimyeloma activity of a multitargeted kinase inhibitor, AT9283, via potent Aurora kinase and STAT3 inhibition either alone or in combination with lenalidomide. 21430070

    Aurora kinases, whose expression is linked to genetic instability and cellular proliferation, are being investigated as novel therapeutic targets in multiple myeloma (MM). In this study, we investigated the preclinical activity of a small-molecule multitargeted kinase inhibitor, AT9283, with potent activity against Aurora kinase A, Aurora kinase B, and Janus kinase 2/3.We evaluated the in vitro antimyeloma activity of AT9283 alone and in combination with lenalidomide and the in vivo efficacy by using a xenograft mouse model of human MM.Our data showed that AT9283 induced cell-growth inhibition and apoptosis in MM. Studying the apoptosis mechanism of AT9283 in MM, we observed features consistent with both Aurora kinase A and Aurora kinase B inhibition, such as increase of cells with polyploid DNA content, decrease in phospho-histone H3, and decrease in phospho-Aurora A. Importantly, AT9283 also inhibited STAT3 tyrosine phosphorylation in MM cells. Genetic depletion of STAT3, Aurora kinase A, or Aurora kinase B showed growth inhibition of MM cells, suggesting a role of AT9283-induced inhibition of these molecules in the underlying mechanism of MM cell death. In vivo studies showed decreased MM cell growth and prolonged survival in AT9283-treated mice compared with controls. Importantly, combination studies of AT9283 with lenalidomide showed significant synergistic cytotoxicity in MM cells, even in the presence of bone marrow stromal cells. Enhanced cytotoxicity was associated with increased inhibition of phosphorylated STAT3 and phosphorylated extracellular signal-regulated kinase.Demonstration of in vitro and in vivo anti-MM activity of AT9283 provides the rationale for the clinical evaluation of AT9283 as monotherapy and in combination therapy for treating patients with MM.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Carbon monoxide stimulates global protein methylation via its inhibitory action on cystathionine β-synthase. 21297920

    Although carbon monoxide derived from heme oxygenase has been reported to exert diverse biological actions in mammals, macromolecules responsible for its direct reception and functional outcomes of the gas binding remain largely unknown. Based on our previous results in vivo suggesting carbon monoxide serves as an inhibitor of cystathionine β-synthase that rate-limits transsulfuration pathway for generation of hydrogen sulfide, we have herein hypothesized that the gas might serve as a regulator of protein methylation through accelerating turnover of remethylation cycle residing at the upstream of the enzyme. Metabolomic analysis in human monoblastic leukemia U937 cells in culture revealed that application of carbon monoxide-releasing molecules caused increases in methionine and S-adenosylmethionine and a decrease in cystathionine in the cells, suggesting the cystathionine β-synthase inhibition by carbon monoxide. Under these circumstances, the cells exhibited global protein arginine methylation: this event was also reproduced by the cell treatment with hemin, a heme oxygenase-1 inducer. The protein arginine methylation elicited by carbon monoxide was attenuated by knocking down cystathionine β-synthase with its small interfering RNA or by blocking S-adenosylhomocysteine hydrolase with adenosine dialdehyde, suggesting remethylation cycling is necessary to trigger the methylation processing. Furthermore, proteins undergoing the carbon monoxide-induced arginine methylation involved histone H3 proteins, suggesting chromatin modification by the gas. Collectively with our studies in vivo showing its inhibitory action on endogenous hydrogen sulfide production, the current results suggest that not only inhibition of transsulfuration pathway for H(2)S generation but also activation of protein methylation accounts for notable biological actions of carbon monoxide via the cystathionine β-synthase inhibition.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Inhibition of HDACs-EphA2 Signaling Axis with WW437 Demonstrates Promising Preclinical Antitumor Activity in Breast Cancer. 29759486

    Histone deacetylase inhibitors (HDACi) are small molecules targeting epigenetic enzymes approved for hematologic neoplasms, which have also demonstrated clinical activities in solid tumors. In our present study, we screened our internal compound library and discovered a novel HDACi, WW437, with potent anti-breast cancer ability in vitro and in vivo. WW437 significantly inhibited phosphorylated EphA2 and EphA2 expression. Further study demonstrated WW437 blocked HDACs-EphA2 signaling axis in breast cancer. In parallel, we found that EphA2 expression positively correlates with breast cancer progression; and combined use of WW437 and an EphA2 inhibitor (ALW-II-41-27) exerted more remarkable effect on breast cancer growth than either drug alone. Our findings suggested inhibition of HDACs-EphA2 signaling axis with WW437 alone or in combination with other agents may be a promising therapeutic strategy for advanced breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. 22771460

    Long-term memory formation is known to be critically dependent upon de novo gene expression in the brain. As a consequence, pharmacological enhancement of the transcriptional processes mediating long-term memory formation provides a potential therapeutic strategy for cognitive disorders involving aberrant neuroplasticity. Here we focus on the identification and characterization of small molecule inhibitors of histone deacetylases (HDACs) as enhancers of CREB (cAMP response element-binding protein)-regulated transcription and modulators of chromatin-mediated neuroplasticity. Using a CREB reporter gene cell line, we screened a library of small molecules structurally related to known HDAC inhibitors leading to the identification of a probe we termed crebinostat that produced robust activation of CREB-mediated transcription. Further characterization of crebinostat revealed its potent inhibition of the deacetylase activity of recombinant class I HDACs 1, 2, 3, and class IIb HDAC6, with weaker inhibition of the class I HDAC8 and no significant inhibition of the class IIa HDACs 4, 5, 7, and 9. In cultured mouse primary neurons, crebinostat potently induced acetylation of both histone H3 and histone H4 as well as enhanced the expression of the CREB target gene Egr1 (early growth response 1). Using a hippocampus-dependent, contextual fear conditioning paradigm, mice systemically administered crebinostat for a ten day time period exhibited enhanced memory. To gain insight into the molecular mechanisms of memory enhancement by HDAC inhibitors, whole genome transcriptome profiling of cultured mouse primary neurons treated with crebinostat, combined with bioinformatic analyses of CREB-target genes, was performed revealing a highly connected protein-protein interaction network reflecting modules of genes important to synaptic structure and plasticity. Consistent with these findings, crebinostat treatment increased the density of synapsin-1 punctae along dendrites in cultured neurons. Finally, crebinostat treatment of cultured mouse primary neurons was found to upregulate Bdnf (brain-derived neurotrophic factor) and Grn (granulin) and downregulate Mapt (tau) gene expression-genes implicated in aging-related cognitive decline and cognitive disorders. Taken together, these results demonstrate that crebinostat provides a novel probe to modulate chromatin-mediated neuroplasticity and further suggests that pharmacological optimization of selective of HDAC inhibitors may provide an effective therapeutic approach for human cognitive disorders. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple