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Spiral into 3D 
with spirocyclic 
building blocks

Spirocyclic modules containing four-membered rings 
are currently of growing interest to discovery chemists. 

Aldrich offers a suite of spirocyclic building blocks 
and starting materials in collaboration with Professor 
Dr. Erick Carreira. The use of these products allows 
the synthesis of spirocycles with spatially well-defined 
exit vectors to creatively exploit three dimensions. In 
addition, spirocyclic building blocks provide access 
to improved physicochemical properties through 
functionalization, innovative scaffolds in medicinal 
chemistry, and a useful collection of unprecedented 
inputs for fragment-based libraries.
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ABOUT OUR COVER
Tamaca Palms (oil on canvas, 67.9 × 91.3 cm) was painted in 1854 
by the famed American landscape artist Frederic Edwin Church 
(1826–1900). Born to a wealthy family, Church took up art studies 
at an early age and apprenticed for two years with the renowned 
British landscape painter Thomas Cole, who had relocated to 
the U.S. and co-founded the Hudson River School of landscape 
painting. Church began his artistic career soon after by painting 
scenes from the northeastern U.S. in the style of the Hudson 
River School. He won artistic acclaim and achieved commercial 
success early in his career and, unlike many posthumously 
famous artists, had assembled a small fortune from the sale of 
his works by the time he died. 

Inspired by the writings of the distinguished naturalist and explorer Alexander von Humboldt, Church 
travelled extensively in South America, Jamaica, the North Atlantic, the Middle East, Italy, and Greece. It 
was upon his return from a trip to Colombia in 1853 that Church painted Tamaca Palms in his New York 
studio based on meticulous sketches and observations he had made during the trip.* He often painted 
stunning, large, brightly lit, and detailed panoramas that documented the natural features, plants, and 
animals of exotic locales. Reminiscent of the romantic tradition in European art, Church’s awe of the beauty 
and majesty of the natural world is unmistakable in his works, where natural features and phenomena are 
given prominence over the human element. 

This painting is part of the Corcoran Collection at the National Gallery of Art, Washington, DC.

*  Could Church have used the sketches that he based Tamaca Palms on as an inspiration for later compositions, 
especially in his later years? To find out, visit Aldrich.com/acta483
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We welcome your product ideas. Do you need a product that is not featured on our website or in 
our catalog? Ask Aldrich! For more than 60 years, your research needs and suggestions have shaped 
the Aldrich product offering. Email your suggestion to techserv@sial.com.

Dear Fellow Chemists,

Professor Shannon S. Stahl of the Department of Chemistry at the 
University of Wisconsin-Madison, kindly suggested that we consider 
offering KetoABNO, an N-oxyl radical that is a less sterically demanding 
and more electron-deficient redox mediator than TEMPO and ABNO. It 
has been employed to catalyze the efficient aerobic oxidation (oxygen 
or air) of secondary alcohols to ketones at ambient temperature.1 The 

reaction is compatible with substrates containing diverse functional groups. KetoABNO also 
catalyzes a general, mild, and chemoselective aerobic oxidation of amines to imines.2 

(1) Lauber, M. B.; Stahl, S. S. ACS Catal. 2013, 3, 2612.  (2) Sonobe, T.; Oisaki, K.; Kanai, M. Chem. Sci. 
2012, 3, 3249.
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Detail from Tamaca Palms. Photo courtesy National 
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Dynamize your 
chemistry 
with ynamides

Despite their huge potential, the inaccessibility and 
instability of highly reactive nitrogen-substituted alkynes 
such as ynamines impede numerous synthetic routes.

In collaboration with Professor Gwilherm Evano,  
Aldrich offers a selection of ynamides—stable surrogates 
for ynamines due to the presence of the electron-
withdrawing group (EWG). These strikingly reactive yet 
stable building blocks are ideal for a multitude of chemo-, 
regio-, and stereoselective transformations. Their utility 
is extended since the EWG furnishes a versatile chelating 
or directing site. Significant scaffolds and reagents in 
total synthesis and medicinal chemistry, ynamides are 
also excellent precursors of highly reactive keteniminium 
ions, carbenoids, and many other useful intermediates 
for the development of new and innovative chemical 
transformations.
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Ynamides: Powerful and Versatile Reagents for 
Chemical Synthesis

Mr. M. Lecomte

Keywords. ynamides; alkynes; organic synthesis; heterocyclic 
chemistry; reactivity; reactive intermediates.

Abstract. Ynamides have recently emerged as particularly useful 
building blocks for chemical synthesis. Their remarkable reactivity has 
been exploited in the design of a number of novel synthetic processes 
and for the generation of otherwise inaccessible reactive intermediates. 
The state of the art of the chemistry of ynamides and its impact on 
organic synthesis are highlighted in this review, which has been 
structured according to the nature of both the reactive intermediates 
generated and the types of reaction they undergo. 

Outline
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 2.1. Of Otherwise Inaccessible Keteniminium Ions
  2.1.1. By Protonation 
  2.1.2. By Reaction with Electrophiles
  2.1.3. By Reaction with Electrophilic Metal Complexes 
 2.2. Of a-Oxo- or a-Imidocarbenes and Carbenoids 
  2.2.1.  a-Oxocarbenes by Gold-Catalyzed Reaction of 

Ynamides with Mild Oxidants
  2.2.2.  a-Imidocarbenes by Gold-Catalyzed Reaction of 
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3.  Carbometallation of Ynamides: New Paradigms in Asymmetric 
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Products: Enabling New and Original Bond Disconnections
10. Conclusion and Outlook
11. Acknowledgments
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1. Introduction 
Organic synthesis is today clearly a central science with significant 
contributions to, and impact on, various other scientific disciplines 
such as biology, medicine, and materials science. As a consequence, 
the high and growing demand for efficient synthetic routes to assemble 
complex molecules or pharmaceuticals from simple building blocks, as 
well as the quest for molecular diversity, will continue to challenge the 
resourcefulness of organic chemists for years to come. In this context, the 
development of original and versatile starting materials, together with 
the design of new strategies, will contribute to the selective syntheses of 
ever larger and more complex systems with increased efficiency.

Mr. C. TheunissenProf. G. Evano

Laboratoire de Chimie Organique
Service de Chimie et PhysicoChimie Organiques
Université Libre de Bruxelles (ULB)
Avenue F. D. Roosevelt 50, CP160/06
1050 Brussels, Belgium
Email: gevano@ulb.ac.be
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The need for cleaner, environmentally benign, and more sustainable 
chemical practices also poses new challenges and requires new ways of 
carrying out chemical synthesis. Hence, in addition to the development 
of new reactions, reagents, and catalysts, novel ways to assemble 
molecules in a more sustainable manner are presently an important 
factor to consider.

The chemistry of ynamides clearly falls into this category: they 
display an exceptionally fine balance of stability and reactivity, offer 
unique and multiple opportunities for the inclusion of nitrogen-based 
functionalities into organic molecules,1 and have recently emerged as 
especially useful and versatile building blocks.2,3 Indeed, the electron-

Figure 1. “Ynamides”: Structural Types and Chemical Properties.

Figure 2. (a) Comparison of the Nucleophilicity Parameters N of Ynamides 
with Those of Related p-Nucleophiles (Mayr Reactivity Scale). (b) Generation 
of Keteniminium Ions from Ynamides. (Ref. 18)

R1 N
R2

EWG

R1
N•

R2

EWG

stabilization
directing group
chiral auxiliary
potential internal 
reactive site

ynamides

triple bond polarization
strong differentiation 
of the two sp carbons
precursors of highly 
reactive intermediates

(a) Overview of the Reactivity of Ynamides

(b) Most Common Classes of Ynamides (Electron-Deficient Ynamines)

R1 N
R2

R3

O

R1 N
R2

OR3

O

R1 N
R2

S
OO

R3

R1 N
R2

NR3R4

O

R1 N
R2
R3

O

O

R1 N
P

R2

NR1

R1 N

R2

R3

R1 N
EWG

N

O OR3

OR4

R1 N
S

O R2

R3
R1 N

S
O R2

NR3R4

R1 N
P

R2

O OR3

NR4R5 R2

EWG

N

0

1

2

3

4

5

6

H Ph
Ph

H

NHAc

Et N

Ph N

Ph N

O

Bn

Ts

Bn

Ts

N
Bn

Ts

OMe

11

12ON
Me

ON
Ph 7

(a) Nucleophilicity Parameters N of Ynamides

(b) Ynamides as Precursors of Keteniminium Ions

R1 N
R2

EWG

R1
N•

R2
EWG

EE

donating ability of the ynamide nitrogen strongly polarizes the triple 
bond, which allows for exceptionally high levels of reactivity and 
regio- and/or stereoselectivities. This reactivity is yet tempered by 
the electron-withdrawing group, which provides enhanced stability 
when compared to the highly sensitive ynamines,4,5 and can also act 
as an efficient directing group, chiral auxiliary, or can even participate 
in the reaction (Figure 1). These characteristics, coupled with recent 
breakthroughs in their synthesis,6–16 have allowed for the increased 
application of ynamides in synthesis and for their involvement in new 
and remarkably efficient sequences that are difficult to accomplish 
otherwise.

This short review highlights the remarkable reactivity of these 
building blocks through selected and representative examples of new 
reactions that have been designed on the basis of the unique behavior of 
ynamides and other electron-deficient ynamines,17 which are now also 
commonly referred to as “ynamides”.

2. Ynamides as User-Friendly Precursors 
2.1. Of Otherwise Inaccessible Keteniminium Ions
Two characteristic features that are crucial to the reactivity of ynamides 
are the activation of the triple bond and its strong polarization due to 
the conjugation of the amine group with the alkyne. Recent studies have 
shown that ynamides react with electrophiles between 103 to 105 times 
faster than regular alkynes (Figure 2).18 The resulting keteniminium ions 
can participate in a number of transformations including the trapping 
of these highly reactive and otherwise inaccessible intermediates with 
nucleophiles. Many electrophile–nucleophile combinations have been 
employed to access diverse building blocks from ynamides; selected 
examples will be presented in the next paragraphs. 

2.1.1. By Protonation 
Brönsted acids have been widely utilized for the generation of 
keteniminium ions by protonation of ynamides. Depending on the type 
of acid used and the presence or absence of an additional nucleophile, 
the conjugated base can act as a nucleophile that traps the keteniminium 
ion. This yields polysubstituted enamides in a highly stereocontrolled 
manner, which are valuable building blocks in chemical synthesis and 
medicinal chemistry. The regio- and stereoselective hydrohalogenation 
of ynamides is certainly the most representative example of this type of 
reactivity (Scheme 1, Part (a)).19–21 

Provided that a strong acid is utilized for the protonation of 
ynamides—which allows the generation of keteniminium ions 
associated with weakly nucleophilic counterions—additional 
nucleophiles such as arenes can be used to trap the intermediate 
keteniminium intermolecularly (Scheme 1, Part (b))22 or even 
intramolecularly (which would correspond to a keteniminium version of 
the Pictet–Spengler cyclization), as exemplified in Scheme 1, Part (c).23 
The generation of highly reactive keteniminium ions by protonation of 
ynamides, followed by their reaction with a nucleophile, has also been 
employed to generate intermediate species which can then undergo 
a [3,3]-sigmatropic rearrangement. Indeed, the protonation of chiral 
ynamides with para-nitrobenzenesulfonic acid, followed by addition of 
allylic alcohols and subsequent rearrangement of the intermediate allyl 
vinyl ethers, yields highly substituted homoallylic amides with good 
levels of diastereoselectivity, which illustrates well the use of chiral 
ynamides in asymmetric synthesis (Scheme 1, Part (d)).24 In a similar 
fashion, the use of arylsulfoxides instead of allylic alcohols provides 
an efficient (excellent yields within minutes at room temperature) entry 
into a-arylamides, when catalytic amounts of triflic acid are utilized 
(Scheme 1, Part (e)).25
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CuIII complexes—generated by (formal) oxidative addition of Pd0 or 
CuI precursors to aryl triflates and diaryliodonium salts respectively—
react readily with ynamides, as exemplified by the palladium-catalyzed 
arylative cyclization of hydroxy-ynamides (Scheme 3, Part (a))32 and 
the copper-catalyzed carbocyclization of homobenzylic ynamides 
(Scheme 3, Part (b)).33

In addition to these electrophilic palladium and copper complexes, 
the metal that is probably the most suitable for the activation of the triple 
bond of ynamides is gold. Indeed, gold complexes have been shown 
over the years to be excellent electrophilic catalysts for the activation of 
alkynes, and their use with ynamides, which are more electron-rich than 
regular alkynes, is therefore ideal. In addition, the polarization of the 
triple bond ensures high levels of chemoselectivity, as demonstrated by 
the gold-catalyzed hydroamination of ynamides which proceeds readily 
at room temperature (Scheme 3, Part (c)).34 

Perhaps more importantly than its use for the regioselective addition 
of nucleophiles to ynamides, this exceptional affinity between gold 
complexes and ynamides has found a number of applications in the design 
of new reactions based on the interception of the auro-keteniminium 
ions with certain nucleophiles, giving rise to intermediates that can be 
further elaborated into carbenoid species. Representative examples of 
such transformations will be discussed in the next section.

2.1.2. By Reaction with Electrophiles
The use of other electrophilic reagents for the generation of keteniminium 
ions from ynamides is much more challenging since they need to 
selectively react with the triple bond and not the electron-withdrawing 
group, which would result in a loss of the stabilization of the ynamides. 
In addition, the counteranion needs to be a weak nucleophile to avoid 
trapping the keteniminium ion, which can be circumvented by using 
an internal nucleophile. The halo-26 and carbocyclizations27 of ortho-
anisole-substituted ynamides yielding highly substituted benzofurans 
(Scheme 2, Part (a)) are representative of this strategy. Other examples 
that nicely illustrate both the synthetic potential of ynamides and the 
exceptional reactivity of keteniminium ions generated from these 
building blocks include the reaction of ynamides with aldehydes, 
ketones, or enones in the presence of a Lewis acid catalyst. Indeed, 
upon activation with boron trifluoride or a combination of CuCl2 and 
AgSbF6, the activated carbonyl derivatives are electrophilic enough 
to react with ynamides to give intermediate keteniminium ions which 
can be converted into conjugated amides (Scheme 2, Part (b))28,29 or 
into formal [2 + 2] cycloaddition products (Scheme 2, Part (c)).30 An 
enantioselective version of the last reaction, now commonly known as 
the Ficini cycloaddition, has been reported recently.31

2.1.3. By Reaction with Electrophilic Metal Complexes 
Besides strong acids and other electrophiles; such as halonium ions, 
carbocations, or activated carbonyl derivatives; electrophilic metal 
complexes can also be employed for the generation of transient 
keteniminium ions that can then be trapped by a nucleophile, generally 
in an intramolecular fashion. In this respect, electrophilic PdII and 

Scheme 1. Keteniminium Ions by Protonation of Ynamides and Their 
Subsequent Transformations. (Ref. 19–25)
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2.2. Of a-Oxo- or a-Imidocarbenes and Carbenoids
a-Oxocarbenes and carbenoids are versatile intermediates that are 
extensively employed for the development of a wide array of useful 
transformations. They are, however, typically generated by metal-
promoted decomposition of the corresponding potentially hazardous 
diazo derivatives, which is clearly a severe limitation in terms of 
efficiency, flexibility, and safety (Scheme 4, Part (a)).  In an attempt to 
address this drawback, recent studies have shown that such carbenoids 
can be readily generated by metal-promoted activation of ynamides 
in the presence of a suitable mild oxidant. This approach provides an 
interesting and user-friendly alternative to the use of diazo derivatives 
(Scheme 4, Part (b)).

Both the inherent reactivity of ynamides and the nature of the 
oxidant are critical in this approach, since the polarization of the 
triple bond of the ynamide ensures a total regiocontrol of the p-acidic 
activation by the metal, and therefore the addition of the nucleophilic 

Scheme 4. Ynamides as Precursors of a-Oxocarbenoids.
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external oxidant (LG+-O–) a to the nitrogen atom, while the presence of 
a leaving group in the oxidant enables the generation of the carbenoid. 

2.2.1. a-Oxocarbenes by Gold-Catalyzed Reaction of 
Ynamides with Mild Oxidants
This strategy turned out to be especially fruitful by allowing the 
generation of a-oxocarbenoids under remarkably mild conditions (gold 
complexes as catalysts and pyridine N-oxides as oxidants) from readily 
available starting materials. In addition, these transformations proceed 
with impressive levels of chemoselectivity, since the ynamide can be 
selectively activated in the presence of a wide number of potentially 
oxidizable functional groups such as alkenes, alkynes, or even sulfides. 

Once generated, the a-oxocarbenoids can participate in a number 
of inter- and intramolecular transformations. Representative examples 
involving an intermolecular reaction of a-oxocarbenoids include 
their trapping with allylic sulfides followed by a [2,3]-sigmatropic 
rearrangement, which leads to highly functionalized a-thioamides 
(Scheme 5, Part (a)),35 or their reaction with indoles (Scheme 5, Part 
(b)).36 Alternatively, the presence of an internal functional group which 
can react with the intermediate carbenoid can be utilized to access 
various cyclic and polycyclic molecules. For example, intramolecular 
cyclopropanation of an appended alkene provides a straightforward 
entry to fused cyclopropyl-lactams (Scheme 5, Part (c)),37 while a 5-exo-
dig cyclization involving an internal styryl group yields functionalized 
indenes (Scheme 5, Part (d)).38 In all cases, the advantage of using 
ynamides rather than the corresponding diazo compounds as precursors 
of carbenoids is quite obvious. Following these studies, the use of 
other oxidants such as sulfoxides39 or nitrones40 and the use of rhodium 
complexes instead of gold catalysts have been reported.41

2.2.2. a-Imidocarbenes by Gold-Catalyzed Reaction of 
Ynamides with Pyridine N-Aminidines and Isoxazoles
In all examples mentioned in the previous paragraphs, the pyridine 
N-oxide derivatives only transfer their oxygen atom to generate 
the oxocarbenoid that is then trapped by a nucleophile, either 
intramolecularly or intermolecularly. An extension of this strategy 
relies on the use of nitrogen nucleophiles possessing both a leaving 
group and a nucleophilic site, masked or not, enabling the generation 
of electrophilic gold a-imidocarbenes that can react with the internal 
nucleophile. The gold-catalyzed, formal [3 + 2] cycloaddition between 
ynamides and pyridine N-aminidines is a remarkable application of 
this reactivity: Reaction of the ynamides with dichloro(pyridine-
carboxylato)gold triggers the addition of the pyridine N-aminidine 
ylide to the ynamide. This is followed by cleavage of the pyridine 
N-aminidine N–N bond—generating the key a-imidocarbene—and 
cyclization involving the N-acyl group to yield highly substituted 
oxazoles (Scheme 6, Part (a)).42 Similarly, isoxazoles can be employed 
in place of the pyridine N-aminidine ylide to give 2-aminopyrroles that 
result from a formal [3 + 2] cycloaddition (Scheme 6, Part (b)).43 

As evidenced by all the examples described up to this point, ynamides 
have evolved as remarkably useful building blocks which act as efficient 
precursors of highly reactive intermediates such as keteniminium ions 
or carbenoids that can hardly be accessed from other reagents. This 
exceptional reactivity, which has ultimately led to the design of original 
reactions, is mostly based on the electron-rich nature of the ynamides 
and the polarization of the alkyne. Another facet of their reactivity that 
has been explored recently is based on their anionic chemistry and, here 
too, ynamides act as unique building blocks, notably as substrates for 
carbometallation reactions. These reactions, and the impressive input of 
ynamides in this chemistry, will be presented in the next section. 
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3.2. Intramolecular Carbometallation: New Perspectives in 
Heterocyclic Chemistry 
The unique reactivity of ynamides towards organometallic reagents 
has also been exploited for the design of new syntheses in heterocyclic 
chemistry based on intramolecular carbometallation reactions. In this 
context, the capacity of the electron-withdrawing group to control 
the regioselectivity of an intramolecular carbolithiation has been 
used to prepare highly functionalized 1,4-dihydropyridines from 
N-allylynamides by a totally selective deprotonation and 6-endo-dig 
cyclization sequence (Scheme 8, Part (a)).50

Other heterocycles that can be readily prepared by intramolecular 
carbometallation of ynamides include functionalized indoles—easily 

3. Carbometallation of Ynamides: New Paradigms in 
Asymmetric Synthesis and Heterocyclic Chemistry
The carbometallation of ynamides is certainly the most straightforward 
way to generate, with high levels of regio- and stereoselectivities, 
metallated enamides. Except in the case where the metal employed is 
palladium, the presence of the electron-withdrawing group (EWG)—
which is also an excellent coordinating group—usually overcomes the 
polarization of the triple bond (the two effects acting in opposite ways), 
and controls the regioselectivity of the carbometallation. This results 
in the selective formation of a-metallated enamides rather than their 
b-metallated isomers, regardless of the inter- or intramolecular nature 
of the reaction. 

3.1. Intermolecular Carbometallation: Easy Access to 
Metallated Enamides and Beyond 
Various organometallic reagents have been employed for the 
carbometallation of ynamides in the presence or absence of a 
catalyst. For example, the carbocupration44,45 and rhodium-catalyzed 
carbozincation46 of these building blocks afford straightforward 
entries to a-metallated enamides, which can be trapped by an array of 
electrophiles, with total control of both the regio- and stereoselectivities. 
The carbometallation of ynamides with organoboron reagents is a good 
illustration of the switch of regioselectivity that can be achieved by 
the proper choice of the catalytic system. Indeed, while the use of a 
rhodium catalyst provides the b-functionalized enamides resulting from 
a cis carbometallation that places the metal next to the nitrogen atom 
(Scheme 7, Part (a)),47 switching to palladium catalysts reverses both 
the regio- and stereoselectivity of the reaction (Scheme 7, Part (b)).48

Besides providing one of the most efficient entries to multisubstituted 
enamides, the carbometallation of ynamides has had a dramatic 
impact in asymmetric synthesis. One of the most striking examples is 
the carbocupration of chiral ynamides and oxidation of the resulting 
vinylcopper species. This sequence, the success of which is clearly 
based on the unique reactivity of ynamides, enables the generation of 
stereodefined trisubstituted enolates—compounds that are especially 
challenging to generate otherwise—which are then trapped with 
aldehydes to yield aldol adducts possessing all-carbon quaternary 
stereocenters (Scheme 7, Part (c)).49

Scheme 6. Gold-Catalyzed, Formal [3 + 2] Cycloaddition of Ynamides via 
a-Imidocarbenoids. (Ref. 42,43)
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obtained by carbocupration of readily available N-arylynamides (Scheme 
8, Part (b))51,52—or their tetrahydro derivatives. Higher ring systems 
can be accessed from bromoenynamides by a palladium-catalyzed 
cyclization–cross-coupling–electrocyclization sequence (Scheme 8, 
Part (c)).53 

4. Ynamides as Precursors of Metallated Ketenimines 
If organometallic reagents and palladium catalysts can be utilized 
to generate metallated enamides from ynamides, as discussed in the 
previous paragraphs, they can also be employed to generate metallated 
ketenimines in situ, another useful class of reactive intermediates that 
are quite challenging to prepare despite their interesting reactivity.

The first strategy to generate these metallated ketenimines involves 
either the addition of an organolithium to ynimines or the deprotonation 
of the latter with a strong base. The metallated ketenimines can then 
be trapped with electrophiles, which provides a highly divergent and 
efficient entry to various building blocks, including highly substituted 
alkanenitriles, alkenenitriles, ketenimines, and conjugated amides 
(Scheme 9).54 

The second strategy for the generation of metallated ketenimines 
is based on the palladium-catalyzed oxidative addition to the C–N 
bond of N-allylynamides. The products resulting from this oxidative 
addition are in equilibrium with the palladated ketenimine, which can 
then proceed down a number of reaction pathways including reductive 
elimination and reaction with amines yielding homoallyl amidines,55 
or an aza-Rautenstrauch rearrangement affording cyclopentenimines56 
(Scheme 10). The reductive elimination represents a straightforward 
and efficient entry to ketenimines, while the intermediate palladated 
ketenimines have found various elegant applications in the synthesis of 
complex heterocyclic systems.57,58

5. Ynamides as Radical Acceptors
Ynamides are also excellent radical acceptors and their use in free 
radical reactions provides many opportunities for the synthesis of 
nitrogen-containing molecules. There are still only few examples 
of intermolecular addition of radical intermediates to ynamides, the 
most notable being the addition of the electrophilic thiyl radicals. One 
equivalent of thiol in tert-butyl alcohol in the presence of AIBN as 
the radical initiator provides within 10 minutes the corresponding Z 
b-thioenamide—a moiety that is found in various natural products—as 
the main product. Employing an excess of thiol and longer reaction 
times affords mainly the E isomer (Scheme 11, Parts (a) and (b)).59

The beneficial use of ynamides as radical acceptors is even more 
evident in the intramolecular counterparts, since they afford efficient 
and original entries to nitrogen heterocycles of various sizes. The size 
of the heterocyclic ring is controlled simply by the length of the tether 
between the radical center and the ynamide (Scheme 11, Part (c)).60,61

6. Ynamides in Cycloaddition Reactions: Diversity-
Oriented Syntheses of Heterocycles
The main problem of cycloadditions involving alkynes is that they 
often yield mixtures of regioisomers due to a poor differentiation of 
the two sp carbon atoms of the triple bond. This issue can be easily 
overcome by using ynamides since the inherent polarization of the 
triple bond ensures that high levels of regioselectivity are typically 
reached. Another clear advantage of ynamides in cycloaddition 
reactions lies in the intramolecular variants, which lead to the direct 
assembly of a wide range of heterocyclic scaffolds. These reactions are 
efficiently catalyzed by various metals, and representative examples 
are covered in this section.

Scheme 9. Generation and Reactivity of Metallated Ketenimines from 
Ynimines. (Ref. 54)
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6.1. [2 + 2] Cycloadditions 
The most notable example of a formal [2 + 2] cycloaddition involving 
ynamides is the Ficini cycloaddition, which is actually a stepwise 
process involving the generation of an intermediate keteniminium 
ion followed by ring closure as described in Section 2.1.2 (Scheme 
2, Part (c)). [2 + 2] cycloadditions with ynamides, which efficiently 
yield aminocyclobutenes, also include their highly regioselective 
thermal reaction with ketenes (Scheme 12, Part (a)).62 This variant 
was recently extended to the use of ynesulfoximines,63 iodoynamides,64 
and vinylketenes,65 and is now a robust method for the synthesis of 
3-aminocyclobutenones. Other examples of [2 + 2] cycloadditions with 
ynamides are the Ru- or Rh-catalyzed reactions with bicyclic alkenes 
(Scheme 12, Part (b))66 and nitrostyrenes.67

6.2.  [3 + 2] Dipolar Cycloadditions 
While most alkynes typically afford mixtures of regioisomers in 
dipolar [3 + 2] cycloaddition reactions, cycloadditions of ynamides 
with dipoles usually proceed with high levels of regioselectivity, and 
can therefore be employed for the preparation of an array of amino-
substituted carbocycles and heterocycles (Scheme 13).68–71 In addition, 
terminal ynamides are also remarkably efficient reaction partners for 
the copper-catalyzed Kinugasa reaction, an iconic route to b-lactams 
in which the first step involves a [3 + 2] cycloaddition with a nitrone. 
The use of an ynamide in this reaction offers two main advantages: it 
can introduce a nitrogen atom on the final b-lactam, or it can control 
the stereochemistry of the two stereocenters formed by starting from 
chiral ynamides.72 

6.3. [4 + 2] Cycloadditions 
The intramolecular [4 + 2] cycloadditions of ynamides can be a 
straightforward entry to various nitrogen heterocycles, and can be 
conducted either in the presence of a cationic rhodium catalyst from 
diene-ynamides (Scheme 14, Part (a)),73 or thermally from enyne-
containing ynamides (Scheme 14, Part (b)).74,75 

An interesting extension—which increases the range of heterocyclic 
systems that can be conveniently synthesized from ynamides using a 
[4 + 2] cycloaddition strategy—was recently reported, and is based on 
a hexadehydro-Diels–Alder reaction of diyne-ynamides. This reaction, 
which can be performed either thermally76 or in the presence of 
catalytic amounts of silver triflate (Scheme 14, Part (c)),77 generates an 
intermediate aryne which can then be trapped by various nucleophiles 
to generate highly functionalized indolines.

In addition to their remarkable [2 + 2], [3 + 2], and [4 + 2] cycloaddition 
reactions, ynamides have been elegantly utilized in [2 + 2 + x] reactions, 
providing entries to other molecular architectures. Here again, the 
success and the high levels of selectivity of these processes lie in most 
cases in the exceptional reactivity of ynamides. These reactions will be 
described in the following paragraphs.

6.4. [2 + 2 + 1] Pauson–Khand Cycloadditions 
[2 + 2 + 1] reactions of ynamides are mostly associated with the Pauson–
Khand reaction. As a gross simplification, the use of ynamides in this 
venerable reaction can be beneficial mostly in two cases: either in an 
intermolecular reaction in which the ynamide is utilized to introduce an 
exocyclic amine (Scheme 15, Part (a)),78 or in intramolecular processes 
in which the nitrogen is incorporated into one of the rings formed during 
the cycloaddition. This latter case results in the diastereoselective 
formation of cyclopentapyrrol-5-one derivatives (Scheme 15, Part 
(b)).79 In both cases, the reaction conditions are based on Schreiber’s 
protocol and rely on the use of [Co2(CO)8] and trimethylamine N-oxide.

Scheme 12. [2 + 2] Cycloadditions with Ynamides. (Ref. 62,66)

Scheme 13. Formal, [3 + 2] Dipolar Cycloadditions with Ynamides. (Ref. 68–71)

Scheme 14. [4 + 2] Cycloadditions with Ynamides. (Ref. 73,74,77)
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6.5. [2 + 2 + 2] Cycloadditions 
The metal-catalyzed [2 + 2 + 2] cycloaddition of ynamides with alkynes 
and/or nitriles provides original entries to polysubstituted anilines, 
aminopyridines, and aminopyrimidines. These reactions have been 
extensively studied over the past decade and, in most cases, at least two 
reactants are tethered to ensure high levels of selectivity. Representative 
examples include the rhodium-catalyzed reaction of yne-ynamides with 
alkynes yielding polysubstituted carbazoles (Scheme 16, Part (a)),80 
the enantioselective cyclization of ynamides with diynes leading to 
axially chiral anilides (Scheme 16, Part (b)),81 and the cobalt-catalyzed 
cyclotrimerization of yne-ynamides with nitriles affording bicyclic 
3-aminopyridines (Scheme 16, Part (c)).82 

While monomolecular versions of these reactions where all 
reactants are tethered together—which leads to the formation of 
one additional cycle—have also been reported, the corresponding 
trimolecular processes, in which serious issues with selectivity often 
arise, are still rare. One isolated example of such cyclotrimerization 
was reported in 2014, and is based on the gold-catalyzed, formal 
[2 + 2 + 2] cycloaddition of an ynamide with two equivalents of a nitrile 
(Scheme 16, Part (d)).83 4-Aminopyrimidines, which are commonly 
found in many bioactive molecules, are formed in high yields and with 
remarkable efficiency. The selectivity of this reaction was attributed 
to the electron-rich nature of the ynamide triple bond, which can be 
selectively activated by the gold catalyst.

7. Cycloisomerization of Ynamides: Rapid Approaches to 
Diverse Nitrogen Heterocycles
Heterocyclic scaffolds that are at the core structures of various 
natural and/or biologically relevant molecules can be accessed by 
cycloisomerization of ynamides possessing other reactive moieties 
such as an alkene or an allene. The cycloisomerization of homoallylic 
ynesulfonamides and their higher homologues is quite representative 
of the advances recently made in this area, and showcases the dramatic 
effect that both the metal catalyst and the substitution pattern of the 
starting ynamide can have on the outcome of the reaction. Indeed, 
upon reaction with a catalytic amount of PtCl2, a 1,6-enynamide 
produced a vinyl-substituted dihydropyrrole (Scheme 17, Part (a)),84 
a compound which can also be obtained from the same enynamide 
using a ring-closing metathesis reaction.85 Under the exact same 
conditions, a 1,7-enynamide exhibited a different behavior and 
led to the selective formation of a strained 2-azabicyclo[4.2.0]oct-
1(6)-ene (Scheme 17, Part (b)).84 A skeletal rearrangement of the 
1,6-enynamide to an aminoethylcyclobutanone was promoted by a 
gold catalyst (Scheme 17, Part (c)).86 The presence of a propargylic 
alcohol in the starting enynamide had a dramatic influence on the 
cycloisomerization reaction pathway, which led to the formation 
of a fused cyclopropylpyrrolidine (Scheme 17, Part (d)).86 The 
combination of a 1,6-enynamide and a palladium(II) catalyst resulted 
in a cycloisomerized product possessing both a five-membered-ring 
heterocyclic core and an exocyclic diene (Scheme 17, Part (e)).87 The 
ruthenium-catalyzed cycloisomerization of the 1,7-analogue afforded 
a 2-azabicyclo[4.2.0]oct-1(8)-ene (Scheme 17, Part (f)).87 Since 
the outcome of these cycloisomerizations is now well understood, 
they clearly provide excellent opportunities for diversity-oriented 
synthesis in heterocyclic chemistry.

If enynamides clearly are ideal substrates in cycloisomerization 
reactions, the cycloisomerizations are not restricted to this subclass 
of ynamides. Other functional groups on the starting ynamides can be 
employed to access other types of cycloisomerization products. The 
silver-catalyzed cycloisomerization of allenynamides (Scheme 18, 

Scheme 15. Pauson–Khand Reactions with Ynamides. (Ref. 78,79)

Scheme 16. [2 + 2 + 2] Cyclotrimerizations with Ynamides. (Ref. 80–83)
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Part (a))88 and the gold-catalyzed transformation of furanyl-ynamides 
(Scheme 18, Part (b))89 are two examples of this approach.

The reliability of the ynamide reactions described up till now, and 
the possibility of predicting the regioselectivity in most of them, have 
recently led to the design of more complex processes in which more than 
one cycle are formed in a single operation. These efficient polycyclization 
reactions from ynamides will now be briefly discussed.

8. Polycyclizations of Ynamides: Straightforward Routes to 
Complex Nitrogen Heterocycles
Most reactions involving ynamides can be taken one step further by 
carefully tuning the nature and position of substituents to promote 
cascade processes, leading to the selective formation of complex 
heterocyclic frameworks. In most cases, the activation of the ynamide 
triggers the polycyclization, and its presence typically controls the 
regioselectivity of the process. 

The first cationic cascade involving ynamides was reported in 2014, 
and is based on a keteniminium ion initiated cascade polycyclization 
of N-benzyl- or N-allyl-ortho-tolylynamides. Upon reaction with 
excess triflic acid or catalytic amounts of bistriflimide, these ynamides 
are transformed into the corresponding highly reactive keteniminium 
ions. This induces a [1,5]-shift of hydrogen, an electrocyclization, 
and a Friedel–Crafts-type reaction (Scheme 19, Part (a)).90 Polycyclic 
nitrogen heterocycles possessing up to three stereocenters and seven 
fused cycles can be easily obtained in a single operation: the comparison 
of this route with previously reported ones for accessing similar 
molecular architectures in more than ten steps clearly demonstrates the 
advantages of using ynamides.

The gold-catalyzed activation of ynamides can also be employed to 
promote polycyclization reactions via gold carbenoids. Treatment of 
an N-styryl ortho-azidophenyl ynamide with a cationic gold catalyst 
at room temperature generates the key carbenoid (by activation 
of the ynamide, nucleophilic attack of the azide, and extrusion of 
dinitrogen), which is trapped by the appended alkene to generate a 
cyclopropanindoloquinoline with remarkable efficiency (Scheme 19, 
Part (b)).91

The vinylpalladium complex formed after an initial oxidative 
addition–carbopalladation sequence of a bromoenynamide (see 
Scheme 8, Part (c)) can also be utilized in a cascade polycyclization 
by further intramolecular carbopalladation of a second alkyne group in 
the starting acyclic precursor (Scheme 19, Part (c)).92 Reactive aryne 
intermediates—which are conveniently generated by a silver-catalyzed 
formal [4 + 2] cycloaddition from diyne-ynamides as discussed 
in Section 6.3 (see Scheme 14, Part (c))—can also trigger a second 
cyclization by insertion into a C(sp3)–H bond, affording multisubstituted 
cyclopentaindoles in excellent yields (Scheme 19, Part (d)).93

9. Ynamides as Building Blocks for the Synthesis of 
Natural Products: Enabling New and Original Bond 
Disconnections
Previous sections demonstrated the tremendous advances recently 
reported in the chemistry of ynamides. Capitalizing on the remarkable 
reactivity of ynamides, a number of robust, reliable, and efficient 
processes have been developed over the past 15 or so years. Simple 
building blocks, heterocycles, reactive intermediates, as well as complex 
molecular architectures can efficiently be obtained from various 
ynamides. The attractiveness and reliability of some of these processes, 
which often also provide shorter and more efficient synthetic routes 
as compared to other approaches, have been exploited in the synthesis 
of various natural products, an area of chemistry where only the most 

Scheme 18. Other Cycloisomerizations of Ynamides. (Ref. 88,89)

Scheme 19. Cascade Polycyclizations of Ynamides. (Ref. 90–93)
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robust and reliable methods can be employed.94 Figure 3 showcases 
a few of the natural and/or biologically relevant molecules that are 
readily obtained using an ynamide in a key step of the synthesis.23,95–104 
Importantly, ynamides are not only utilized for the introduction of a 
nitrogen atom, they can also be employed to access key intermediates in 
a synthetic sequence or to control the regio- and/or stereoselectivity of 
a reaction. In this latter case, the nitrogen atom of the starting ynamides 
can be sacrificial and does not necessarily have to be incorporated into 
the target molecule. 

10. Conclusion and Outlook
The unique reactivity of ynamides has made them into powerful 
reagents for chemical synthesis. They are convenient precursors of 
highly reactive intermediates such as keteniminium ions or carbenoid 
species. They offer general, reliable, and often straightforward routes to 
many molecules ranging from simple building blocks and heterocycles 
to complex polycyclic structures and natural products. Chiral ynamides 
offer new opportunities in asymmetric synthesis, and various long-
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substituted alkynes” or “N-alkynylamides”, but their reactivity is in 
fact a subtle combination of both functional groups, and the ynamide 
moiety should in general be considered as a whole. Ynamides have 
been used recently in coordination chemistry, where they behave as 
stable equivalents of unstable oxazol-4-ylidenes.107 Ynamides are 
also starting to find applications in medicinal chemistry. In spite of 
the widespread studies of ynamides, many aspects of their reactivity 
remain largely unexplored. Further understanding and quantification 
of the exact influence of the electron-withdrawing groups and other 
substituents on the reactivity of ynamides will facilitate the choice of 
a class of ynamides for a given application. In any case, this field is 
anticipated to continue to rapidly expand and mature, and interesting 
breakthroughs can be expected.
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Cyclic Sulfamidate Enabled Syntheses of Amino 
Acids, Peptides, Carbohydrates, and Natural Products

Dr. R. S. Varma

Keywords. regiospecific; stereospecific; ring-opening; unnatural 
amino acid; chiral building block; natural product; cyclic sulfamidate.

Abstract. This article reviews the emergence of cyclic sulfamidates 
as versatile intermediates for the synthesis of unnatural amino acids, 
chalcogen peptides, modified sugars, drugs and drug candidates, and 
important natural products.
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1. Introduction
Cyclic sulfamidates are synthetic intermediates that are readily 
accessible from both amino acids and amino alcohols, and form a 
versatile set of electrophiles that can undergo facile and regiospecific 
nucleophilic substitution at the O-bearing carbon center. Synthetically, 
five- and six-membered-ring sulfamidates are equivalent to aziridines 
and azetidines. However, cyclic sulfamidates have several advantages 
over aziridines and azetidines in terms of reactivity and selectivity 
(Figure 1, Part (a)). The present article reviews exciting recent advances 
in organic synthesis enabled by cyclic sulfamidates. 

2. Structural Analysis and Reactivity of Cyclic Sulfamidates
Cyclic sulfites (1,3,2-dioxathiolane 2-oxides, 1) and cyclic sulfates 
(1,3,2-dioxathiolane 2,2-dioxides, 2) are the sulfite and sulfate esters of 
diols, and are the synthetic equivalents of epoxides. Cyclic sulfamidites 
(1,2,3-oxathiazole 2-oxide, 3) and sulfamidates (1,2,3-oxathiazole 
2,2-dioxides, 4) are the corresponding sulfite and sulfate esters of amino 
alcohols, and are the synthetic equivalents of aziridines (Figure 1, Part 
(b)). Although compound classes 1–4 have been known for a long time, 
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their general application in synthesis became possible only after the 
development of efficient methods for their synthesis. Derivatives 3 and 
4 can be better alternatives to aziridines, since they are not encumbered 
with regioselectivity issues; sulfamidates (4), an activated form of 
sulfamidites (3), have a great potential as nitrogenous electrophiles for 
regioselective ring-opening under mild conditions. 

3. Synthesis of Cyclic Sulfamidates 
McCombie and Parkes discovered cyclic sulfamidites by accident in 
1912.1 However, they remained little used until 1969, when Deyrup 
and Moyer’s unsuccessful attempt to prepare aziridines from 1,3-amino 
alcohols led to the formation of cyclic sulfamidites instead.2 While this 
became thereafter a practical method for their synthesis,3 the sluggish 
reactivity of sulfamidites, and the need to employ drastic conditions 
in their reactions, prevented their wider use in organic synthesis.4 The 
sluggish reactivity of sulfamidites has been overcome by converting 
them into the corresponding sulfamidates.5–7 

3.1. From 1,2-Amino Alcohols 
Cyclic sulfamidates can be prepared directly in one step from 1,2-amino 
alcohols by treatment with SO2Cl2 or SO2Im2.8 This method, however, 
found limited success in the case of conformationally constrained 
1,2-amino alcohols, such as 2-aminophenols and prolinols,9 and 
cannot be utilized as a general preparative method due to competitive 
aziridination and/or azitidation. Consequently, a two-step approach that 
mirrors the synthesis of cyclic sulfates10 has been developed, whereby 
treatment of 1,2- or 1,3-amino alcohols with SOCl2 leads to the efficient 
formation of cyclic 1,2- and 1,3-sulfamidites2 that are then oxidized to 
the sulfamidates (Scheme 1, Part (a)).11 

3.2. From Diols and Epoxides Using the Burgess Reagent 
The Burgess reagent is prepared from chlorosulfonyl isocyanate and 
triethylamine in a simple, two-step procedure.12 Nicolaou and co-
workers have shown that this reagent can be utilized to synthesize cyclic 
sulfamidates from diols via a double alcohol activation mechanism,13 
and applied this approach to the synthesis of functionalized chiral 
sulfamidates from allyl epoxides (Scheme 1, Part (b)).14 This method 
allows the direct conversion of diols (1,2-diols, 1,3-diols, etc.) into 
the corresponding sulfamidates, with the regioselectivity being 
dependent on the stereoelectronic preferences of the diols. Hudlicky 
and co-workers have also demonstrated that cyclic sulfamidates can be 
accessed from epoxides by treatment with the Burgess reagent.15 

3.3. Via Metal-Catalyzed C–H Amination  
Capitalizing on the discovery by Breslow and Gellman,16 Che and co-
workers demonstrated that intermolecular nitrogen insertion into an 
unactivated C–H bond is possible via Ru- or Mn-catalyzed nitrene 
insertion.17 This strategy was applied to cyclic sulfamidates by using 
the enantioselective intramolecular amidation of saturated C–H bonds 
catalyzed by a Ru-porphyrin chiral complex.18 Du Bois and co-workers 
reported a similar protocol using a Rh-catalyzed reaction (Scheme 
1, Part (c)).19 Che’s and Du Bois’s methods involved intramolecular 
cyclization of sulfamate ester wherein the cyclization results most of 
the time in the formation of six-membered-ring cyclic sulfamidates.20,21 
Some sluggish substrates give five- or even seven-membered-ring 
sulfamidates.20 This study led to the development of a modular method 
for the synthesis of sulfamidates from sulfamate esters.22 Cui and He 
have employed silver metal in combination with phenyliodonium 
acetate for the intramolecular cyclization of sulfamate esters.23 There 
have been other strategies utilizing Rh, Cu, and Au metal salts or 
complexes for the formation of seven-membered-ring sulfamidates, 
where the nitrogen is also a part of an aziridine ring system.24–25 
Although the metal-catalyzed synthesis of cyclic sulfamidates has 
been well established using C–H activation, the asymmetric variant 
has not been generalized. Che26 employed chiral manganese(III) 
Schiff-base complexes, while Müller27,28 attempted the use of rhodium 
chiral complexes as catalysts for the enantioselective synthesis of 
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cyclic sulfamidates. However, moderate asymmetric inductions were 
observed in both cases. In contrast, Du Bois’s use of a chiral rhodium 
carboxamidate complex29 and Blakey’s demonstration of cationic 
ruthenium(II)-pybox systems30 have provided a reasonable, practical 
synthesis of chiral cyclic sulfamidates. 

3.4. Through Cascade Metathesis 
Blakey and co-workers disclosed an unconventional method for 
the synthesis of cyclic sulfamidates using a cascade metallonitrene–
alkyne metathesis process.31 Their study was based on the hypothesis 
that the metallonitrene species would react with an alkyne, leading to 
a zwitterionic intermediate; this would be followed by a metal shift 
that precipitates a cascade cyclization coupled with a concerted imine 
reduction. The method has been very useful for the synthesis of six- and 
seven-membered-ring sulfamidates (Scheme 1, Part (d)).31–32

3.5. By Hydrogenation and Transfer Hydrogenation
Treatment of a-hydroxy ketones with sulfamoyl chloride (H2NSO2Cl) 
affords the corresponding cyclic imines which can be hydrogenated 
to sulfamidates.  The asymmetric variant gives direct access to 
enantioenriched cyclic 1,2-sulfamidates as in the case of the Pd/
binaphane one (Scheme 2, Part (a)).33 The reaction proceeds efficiently 
and gives quantitative yields in almost all cases. Lee and co-workers, 
reported that RhCl(R,R)-TsDPEN]Cp* catalyzes an asymmetric 
transfer hydrogenation using formic acid and triethyl amine as the 
hydrogen source.34,35 

3.6. By Arylation of Cyclic N-Sulfamidate Alkylketimines
Feng, Lin, and co-workers developed a new route for the enantioselective 
synthesis of sulfamidates by 1,2-arylation of cyclic N-sulfamidate 
alkylketimines with arylboronate esters. A range of enantiomerically 
pure substituted cyclic sulfamidates have been prepared in 19–99% 
yield by this method in the presence of a chiral rhodium–diene complex 
as a catalyst (Scheme 2, Part (b)) These sulfamidates provide access 
to biologically interesting and enantiomerically pure b-alkyl-b-aryl 
amino alcohols.36

3.7. Through Aminohydroxylation of Sulfamate Esters 
Inspired by the intramolecular aminohydroxylation of carbamates 
derived from allylic alcohols,37 Kenworthy and Taylor employed the 
aminohydroxylation of sulfamate esters derived from homoallylic 
alcohols for the synthesis of six-membered-ring sulfamidates (Scheme 
2, Part (c)).38 

4. Ring-Opening Reactions of Cyclic Sulfamidates
The main driving force in aziridine and azetidine chemistry comes
from the ring strain, which is lacking in five- and higher-membered-
ring nitrogen heterocycles. In contrast, the reactivity in sulfamidate
ring-opening reactions is attributed to the activation of the C–O bond
by the SO2 group, which makes them good electrophiles that can react
with a variety of heteroatom and carbon nucleophiles. Moreover, their
ability to undergo regioselective ring-opening reactions augments their
synthetic value.

4.1. Heteroatom Nucleophiles 
4.1.1. Sulfur Nucleophiles
The ring-opening of sulfamidates with ammonium thiocyanate gives 
3-thiocyanate alanine derivatives (Scheme 3, Part (a)).39,40 Lubell and
co-workers were able to confirm that the stereoselectivity of the reaction 
is not compatible with an elimination–addition mechanism which 

Scheme 2. Additional Syntheses of Cyclic Sulfamidates.
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would result in racemization.3–5 The free thiol group is not a suitable 
nucleophile for the opening of five-membered-ring sulfamidates 
bearing an a-carbonyl group; in combination with a base it leads to the 
formation of dehydro amino acids. Thioacetates, a stabilized form of 
thiol nucleophiles, serve as masked thiols in reactions with sulfamidates 
to give amino thioacetate derivatives.41 Our group has demonstrated 
the usefulness of in situ generated dithiocarbamates, another type of 
stabilized sulfur nucleophile, in sulfamidate chemistry (Scheme 3, Part 
(b)).42 The addition of in situ generated dithiocarbamate anion to cyclic 
sulfamidates leads to stereo- and regioselective ring-opening to form 
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instead of b-amino disulfides.44 This regio- and stereoselective ring-
opening of sulfamidates provides an efficient, direct, and altenative 
route to conventional methods for the synthesis of b-amino thiols via 
the acid-catalyzed ring-opening of aziridines with hydrogen sulfide 
or with the sodium or potassium salt of thioacetic acid, followed by 
deprotection of masked thiols.45 Five-membered-ring sulfamidates give 
b-amino thiols, whereas the reaction of six-membered-ring sulfamidates 
forms g-amino thiols.44

4.1.2. Nitrogen Nucleophiles 
The nucleophilic nitrogen can be that of a primary amine, secondary 
amine, azide, or even that of a heterocyclic system such as imidazole or 
related scaffold. Sodium azide reacts with cyclic sulfamidates to give 
the corresponding amino azide derivatives, with no apparent restriction 
on substrate structure and substituents.46 Primary and secondary amines 
react efficiently with cyclic sulfamidates to give the corresponding 
diamine derivatives (Scheme 4, Part (a)).47 The ring-opening with a 
heterocyclic system nitrogen has been employed effectively to prepare 
chiral 2,3-diaminopropanoate derivatives.48 

4.1.3. Oxygen Nucleophiles
The ring-opening of sulfamidates has been unsuccessful with most 
strong oxygen nucleophiles (e.g., sodium methoxide). The possible 
hydrolysis of serine- or threonine-derived cyclic sulfamidates with 
sodium bicarbonate in deuterated water (D2O) has been disappointing,49 
and the ring-opening of a-methylserine-derived sulfamidates gave a 
very poor yield of ring-opened products.40 The first successful ring-
opening of sulfamidates was achieved with weakly basic oxygen 
nucleophiles, and was further exemplified using stabilized phenoxy 
ions.50 Khanjin and Hesse utilized NaNO2 for the ring-opening of 
sulfamidates, which was followed by hydrolysis to give macrocyclic 
alcohols (Scheme 4, Part (b)).51

4.1.4. Phosphorus Nucleophiles 
The introduction of phosphorus has been very difficult due to its 
sensitivity to the reaction conditions and substrate structure. Although 
many N–P chiral ligands have been synthesized, severe problems have 
been encountered in terms of byproduct formation and purification.52 

Chiral 1-isopropylamino-2-(diphenylphosphino)ethanes can be 
synthesized through ring-opening of chiral, cyclic sulfamidates with 
potassium diphenylphosphide (KPPh2).53,54 This method has been 
extended to the synthesis of protic aminophosphines with multiple 
chiral centers by the nucleophilic ring-opening of N-protected cyclic 
sulfamidates. The introduction of another chiral center into the 
aminophosphine backbone using nucleophilic phosphide—derived 
from the reaction of butyllithium and the respective phosphine–
borane—was a significant finding that was extended to the synthesis of 
a wide range of multicenter phosphine ligands (Scheme 5, Part (a)).53,54

4.1.5. Selenium Nucleophiles 
Chandrasekaran and co-workers reported the synthesis of chiral 
N-benzyl-b-aminodiselenides in moderate-to-good yields via a regio- 
and steroselective ring-opening of sulfamidates with potassium 
selenocyanates (Scheme 5, Part (b)).55 The reaction proceeds 
through selenocyanate intermediates, which, on dimerization with 
tetrathiomolybdate, afford the N-benzyl-b-aminodiselenide products. 

4.1.6. Halogen Nucleophiles 
Among halogens, fluoride ion has been employed for the nucleophilic 
ring-opening of sulfamidates to afford, in the case of five-membered-ring 

Scheme 4. Ring-Opening of Cyclic Sulfamidates with (a) Nitrogen and (b) 
Oxygen Nucleophiles. (Ref. 47,51)
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the optically pure products in high yield (84–95%). Chandrasekaran 
and co-workers have effected the ring-opening of sulfamidates using 
[BnEt3N]2MoS4, which acts as a sulfur-transfer reagent via disulfide 
bond formation. The reaction proceeds efficiently in acetonitrile to give 
the N-alkyl-b-amino disulfides directly (Scheme 3, Part (c)).43

Interestingly, [BnEt3N]2MoS4 exhibited anomalous behavior in the 
reaction with sulfamidates derived from diols by using the Burgess 
reagent. Its reaction with sulfamidates under conditions similar to those 
shown in Scheme 3, Part (c), resulted in the formation of b-amino thiols 
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sulfamidates, b-amino fluorides. KF/CaF2 or ammonium fluorides have 
been used as sources of nucleophilic fluorines (Scheme 5, Part (c)).56

4.2. Carbon Nucleophiles
4.2.1. Hard Carbon Nucleophiles 
The ring-opening of sulfamidates with aryllithium reagents (e.g., phenyl-, 
3,4-dimethoxyphenyl-, and 2-thienyllithium) has been reported.57 While 
the reaction of cyclic sulfamidates with alkyllithiums failed initially,58 
the reaction of alaninol-derived sulfamidates with alkyllithiums such 
as di(n-butyl)lithium cuprate, lithiated acetonitrile, and lithiated 
1,3-dithiane afforded the corresponding amines (Scheme 6, Part (a)).59 
The same reaction with PhLi or n-BuLi gave a mixture of products, 
presumably due to competitive attack at the electrophilic C-5 and S 
centers. Similarly, the reaction of hard carbon nucleophiles (such as 
alkyllithium, Grignard reagents, etc.) with serine- and threonine-
derived sulfamidates consistently led to mixtures of products due to 
competitive attack at the reactive carbonyl group. 

4.2.2. Soft (Stabilized) Carbon Nucleophiles 
It is believed that the softening of carbon nucleophiles through 
conjugation or stabilization would result in increased selectivity. 
Cyanide ion is the most stable of carbon nucleophiles; it can react 
with any type of sulfamidates to give the corresponding aminonitrile 
derivatives.60 Cyclic sulfamidates react with most of the stabilized 
carbon nucleophiles (e.g. β-keto esters, diethyl malonates, aryl-
substituted enolates, and phosphonate-stabilized enolates) to give the 
cyclized product in the presence of a proximate ester, ketone, or amine 
functional group (Scheme 6, Part (b)).61

Many natural products bearing aminoethylene and aminopropylene 
scaffolds at a quaternary stereocenter are known in the literature.62 These 
aminoalkenes can be incorporated at quaternary centers through the 
enantioselective ring-opening of aziridines and azetidines. However, 
these electrophiles require activation at nitrogen, and, typically, a wide 
range of activating groups need to be screened along with asymmetric 
induction.  In contrast, the reaction of cyclic sulfamidates with tert-
butyl 1-methyl-2,6-dioxopiperidine-3-carboxylate in the presence 
of a cinchona-derived phase-transfer catalyst readily gives the ring-
opened product (Scheme 6, Part (c)). The variation in ring size and 
protecting group at the nitrogen atom in the sulfamidates does not alter 
the reaction outcome.63  

5. Applications of Cyclic Sulfamidates in Heterocycle and 
Natural Product Synthesis
Blechert and co-workers utilized cyclic sulfamidates for the synthesis 
of asymmetric ligands that are incorporated into highly active, chiral 
olefin-metathesis catalysts (Scheme 7).64,65  Cyclic sulfamidate 6 
was converted into chiral diamine 7, in high yield and with high 
enantioselectivity, through a regioselective ring-opening with Boc-
mesidine. Chiral diamine 7 was then elaborated into chiral ruthenium 
catalyst 8 in two straightforward steps. 

5.1. (+)-Saxitoxin
Neurotoxic agents are important pharmacological scaffolds used for 
understanding protein function associated with the ionic mechanisms 
of electrical transmission in cells. The guanidinium toxins such as 
(+)-saxitoxin and (–)-tetrodotoxin are exemplary in this regard, and 
have been employed for the study of voltage-gated sodium channels 
along with their identification and characterization. The basic saxitoxin 
skeleton was assembled from cyclic sulfamidate, and converted into 
(+)-saxitoxin and its derivatives (Scheme 8).66

Scheme 6. Ring-Opening of Cyclic Sulfamidates with (a) Hard Carbon 
Nucleophiles and (b, c) Soft Carbon Nucleophiles. (Ref. 59,61,63)
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5.2. (S)-(+)- and (R)-(–)-Dapoxetines
(S)-(+)-Dapoxetine hydrochloride is a potent and selective serotonin 
reuptake inhibitor, and is used specifically for the treatment of 
premature ejaculation. It is obtained from racemic dapoxetine 
by tartaric acid promoted chiral resolution, or from chiral amino 
alcohols through enzymatic synthesis. In contrast, Du Bois’s method, 
employing Rh2(S-nap)4 or Rh2(R-nap)4, provides both enantiomers 
of the cyclic 1,3-sulfamidate precursors, which are easily converted 
into (S)-(+)- and (R)-(–)-dapoxetines using a straightfoward reaction 
sequence (Scheme 9).67

5.3. Antifungal Glucan Synthase Inhibitors 
Enfumafungin, isolated from a fermentation of a Hormonema 
species, is capable of inhibiting fungal glucan synthase, and two 
novel enfumafungin derivatives have been identified as potent 
glucan synthase inhibitors.68 The installation of the side chain was 
accomplished by SN2 ring-opening of an N-tosylated aziridine by the 
in situ generated potassium alkoxide of the starting material.69 The 
replacement of aziridine with its synthetic equivalent, a five-membered-
ring sulfamidate, allows the direct incorporation of the side chain under 
milder condition (Scheme 10).70 

5.4. (+)-Tetraponerine T-3 
The tetraponerines constitute a family of alkaloids that pseudomyrmecine 
ants of the genus Tetraponera deploy as paralyzing venoms in chemical 
warfare. Their challenging tricyclic skeleton and biological activities 
make them attractive targets for total synthesis.71 Mann and co-workers 
reported the synthesis of (+)-tetraponerine T-3 starting from chiral 
(R)-piperidine ethanol and using sulfamidate as a key intermediate en 
route to the strategically important diamine. The diamine was directly 
converted into (+)-tetraponerine T-3 in a one-pot hydroformylation and 
cyclization process (Scheme 11).71

5.5. Pyrrolidinones and Piperidinones
The reactions of five- and six-membered-ring sulfamidates with enolates 
derived from malonate afford access to C–3 carboxylated lactams, such 
as pyrrolidinone and piperidinone derivatives, in excellent yields.61,72 It 
is important to note that the lactamization is dependent on the ring size: 
formation of six-membered rings is slower than that of five-membered 
rings. The reaction of cyclic sulfamidates with phosphonate-stabilized 
enolates gives a-phosphono lactams,73 which are amenable to double-
bond installation through a Wadsworth–Emmons olefination.  Elevated 
temperatures are required to achieve C–O bond cleavage, which leads 
to the competitive decomposition of the enolate component possibly 
due to nucleophilic attack on phosphorus.74 Gallagher and co-workers 
have demonstrated the use of a-sulfinyl-substituted nucleophiles in 
sulfamidate ring-opening reactions, which lead upon hydrolysis to the 
lactamization product.75 The strategy could not be extended to other 
cyclic sulfamidates due to competing sulfoxide elimination at higher 
temperatures, leading to the formation of complex mixtures. Switching 
to the a-phenylsulfenyl group [PhS(=O)–] on the enolate component 
helped generate an array of a-sulfenylated lactams in good-to-
excellent yields. The sulfenylated lactams can be easily converted into 
unsaturated lactams by a Pummerer rearrangement. The strategy was 
employed for the synthesis of alkylidene pyrrolidines and piperidines 
starting with cyclic sulfamidates, which undergo ring-opening with the 
dianion of ethyl acetoacetates, followed by in situ N-sulfate hydrolysis 
and intramolecular condensation onto the intermediate ketone.76 The most 
important application of sulfamidate chemistry in this regard has been the 
enantioselective total synthesis of (–)-paroxetine (Scheme 12, Part (a)) 

Scheme 9. (S)-(+)- and (R)-(–)-Dapoxetines from Cyclic Sulfamidates. (Ref. 67)
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and gram-negative bacteria. The crucial step in its preparation was 
the asymmetric synthesis of the chiral benzoxazine core from the 
sulfamidate. The benzoxazine intermediate was then easily converted 
into (–)-levofloxacin in a few simple steps.81,82 The seven-membered-
ring variants of benzoxazine are important in pharmaceutical 
applications.83 Tetrahydro-1,4-benzothiazepines S107 and JTV519 
are being evaluated for treating conditions linked to the stabilization 
of cardiac ryanodine receptors (RyR1) that leak Ca2+ when subjected 
to stress.84,85 The usefulness of cyclic sulfamidates in this area was 
proven by the synthesis of relevant seven- and eight-membered-ring 
heterocycles (Scheme 14, Part (b)).85 

5.8. Carbohydrates 
A wide range of diols on different carbohydrate scaffolds (e.g., d-Glc, 
d-Gal, l-Rha, d-Rib, etc.) can be converted into the corresponding 
sulfamidates by using the Burgess reagent.86 Nucleophilic ring-
opening of these sulfamidates with sodium azide permits the synthesis 
of a-glycosylamines.86 The ring-opening of carbohydrate-derived 
sulfamidates with non-carbon strong nucleophiles of low basicity 
proceeds efficiently, while the use of carbohydrate-derived soft 

and (+)-laccarin.76 Gallagher also utilized sulfamidates in the synthesis 
of (–)-aphanorphine, a natural product isolated from the freshwater 
blue-green algae, Aphanizomenon flos-aquae (Scheme 12, Part (b)).77–81 

These syntheses proceed through pyrrolidinone or piperidinone 
intermediates, which have also been utilized in the synthesis of natural 
products and their heterocyclic analogues.76–81

5.6. Thiomorpholinones and Piperazinones 
Cyclic 1,2-sulfamidates, even sluggish ones possessing both primary 
and secondary electrophilic centers, react with methyl thioglycolate 
to give chiral thiomorpholinones in excellent yields (Scheme 13, Part 
(a)).79 Gallagher’s group extended this methodology to the synthesis 
of piperazinones, wherein phenylalanine-derived cyclic sulfamidates 
provide the corresponding piperazinones (Scheme 13, Part (b)).79 
Bicyclic systems such as praziquantel can be constructed by employing 
different amino-based nucleophiles;6 a phenylalanine-derived cyclic 
sulfamidate reacts efficiently with enantiotopic proline ethyl esters to 
afford bicyclic piperazinones.79 The ring-opening of an enantiopure 
cyclic sulfamidate with the indole nitrogen of indolecarboxylic acid 
methyl ester provides the corresponding pyrazino-indole with 98% ee.80

5.7. 1,4-Benzoxazines, Benzothiazines, and Quinoxalines 
The ring-opening of sulfamidates with aromatic amines, phenols, or 
thiophenols under basic conditions, in combination with a Pd-catalyzed 
Buchwald-type amination, opens a new avenue for the synthesis of 
1,4-benzoxazines, benzothiazines, and quinoxalines. For example, 
when the ring-opening of cyclic sulfamidates with 2-bromophenols 
is followed by N-sulfate hydrolysis and Pd-catalyzed amination, 
substituted and enantiopure 1,4-benzoxazines are obtained in good-to-
high yields (Scheme 14, Part (a)).81 

(–)-Levofloxacin is one of the major antibiotic drugs used to treat 
a wide range of infections, and is active against both gram-positive 

Scheme 12. Cyclic Sulfamidates in the Synthesis of Piperidinones and 
Pyrrolidinones en Route to (–)-Paroxetine and (–)-Aphanorphine. (Ref. 76,77)
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the nucleophilic ring-opening of sulfamidates with azide, followed by 
azido–alkyne cycloaddition.89 

Lubell and co-workers synthesized N-(9-(9-phenylfluorenyl))-
homoserine-derived cyclic sulfamidates, and showed that they could be 
used for the synthesis of functionalized, enantiopure g-amino acids. The 
reactions were successful with nitrogen, sulfur, and stabilized oxygen 
nucleophiles, providing the corresponding unnatural, g-substituted 
amino acids in >97% ee’s.90  Peregrina’s group reported that the five-
membered-ring, a-methylisoserine-derived (R)-sulfamidate could 
be used as an excellent chiral building block that undergoes ring-
opening with sulfur nucleophiles at the quaternary carbon.91 They 
developed a protocol for the synthesis of (2S,2'R)- and (2R,2'R)-a-
methylnorlanthionines  (a-Me-nor-Lan) in diastereomerically pure 
forms by using the corresponding a-methylisoserine-derived cyclic 
sulfamidate as a chiral building block (Scheme 16).92  

6. Conclusion 
This review highlighted the important role cyclic sulfamidates 
are playing in natural product synthesis and method development. 
Their reactions are highly regioselective and stereospecific with 
inversion of configuration at the reaction center. Even though cyclic 
sulfamidates had not been extensively studied because of their 
reactions with carbon nucleophiles had led to complex mixtures and/or 
decomposition products, recent investigations have overcome most of 
these limitations by softening the carbon nucleophiles. This approach 
has resulted in new synthetic strategies in organic chemistry with no 
limitations in terms of reactivity. We believe that cyclic sulfamidates 
offer a unique synthetic potential, and can provide practical solutions 
to the synthesis of challenging drug targets that are sought after by 
both academia and industry.
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Scheme 15. Carbohydrate-Derived Fused Heterocycles Through the 
Intermediacy of Cyclic Sulfamidates. (Ref. 46)
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nucleophiles results in the successful synthesis of di- and trithio-
saccharide analogues.87 Chandrasekaran and co-workers effected 
the synthesis of carbohydrate-fused triazole heterocycles in a one-
pot tandem process. The reaction proceeds via azido ring-opening 
propargylation and subsequent intramolecular cycloaddition of the 
alkyne and azide to deliver the carbohydrate-fused triazole derivative 
(Scheme 15).46 The same group also reported that the reaction of 
d-glucose-derived sulfamidates with bis(benzyltriethylammonium) 
tetrathiomolybdate {[BnNEt3]2MoS4} results in the formation of 
2-thiolglucosamine derivatives.44,88 

5.9. Unnatural Amino Acids
Interest in unnatural amino acids has been growing due to their 
application in peptide research.89 Cyclic sulfamidates provide a 
unique opportunity to modify natural amino acids into a wide range of 
unnatural analogues by simple reaction sequences and in fewer steps. 
Chandrasekaran’s group converted serine and threonine derivatives into 
unnatural cystine and selenocystine amino acids via cyclic sulfamidate 
intermediates.43,55 Our group has demonstrated that the reaction of cyclic 
sulfamidates with in situ generated dithiocarbamate anions can be used 
for the synthesis of unnatural amino acids containing dithiocarbamate 
side chains.42a We have also utilized sulfamidates for the synthesis of 
triazole-modified unnatural amino acids in 71–86% yields through 
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