Millipore Sigma Vibrant Logo
 

benzopyrans


9 Results Advanced Search  
Showing
Products (0)
Documents (8)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). 8106507

    Phosphatidylinositol (PtdIns) 3-kinase is an enzyme implicated in growth factor signal transduction by associating with receptor and nonreceptor tyrosine kinases, including the platelet-derived growth factor receptor. Inhibitors of PtdIns 3-kinase could potentially give a better understanding of the function and regulatory mechanisms of the enzyme. Quercetin, a naturally occurring bioflavinoid, was previously shown to inhibit PtdIns 3-kinase with an IC50 of 1.3 microgram/ml (3.8 microM); inhibition appeared to be directed at the ATP-binding site of the kinase. Analogs of quercetin were investigated as PtdIns 3-kinase inhibitors, with the most potent ones exhibiting IC50 values in the range of 1.7-8.4 micrograms/ml. In contrast, genistein, a potent tyrosine kinase inhibitor of the isoflavone class, did not inhibit PtdIns 3-kinase significantly (IC50 > 30 micrograms/ml). Since quercetin has also been shown to inhibit other PtdIns and protein kinases, other chromones were evaluated as inhibitors of PtdIns 3-kinase without affecting PtdIns 4-kinase or selected protein kinases. One such compound, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (also known as 2-(4-morpholinyl)-8-phenylchromone, LY294002), completely and specifically abolished PtdIns 3-kinase activity (IC50 = 0.43 microgram/ml; 1.40 microM) but did not inhibit PtdIns 4-kinase or tested protein and lipid kinases. Analogs of LY294002 demonstrated a very selective structure-activity relationship, with slight changes in structure causing marked decreases in inhibition. LY294002 was shown to completely abolish PtdIns 3-kinase activity in fMet-Leu-Phe-stimulated human neutrophils, as well as inhibit proliferation of smooth muscle cells in cultured rabbit aortic segments. Since PtdIns 3-kinase appears to be centrally involved with growth factor signal transduction, the development of specific inhibitors against the kinase may be beneficial in the treatment of proliferative diseases as well as in elucidating the biological role of the kinase in cellular proliferation and growth factor response.
    Document Type:
    Reference
    Product Catalog Number:
    19-142
    Product Catalog Name:
    LY 294002
  • D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. 17267664

    The dopamine transporter (DAT) terminates dopamine (DA) neurotransmission by reuptake of DA into presynaptic neurons. Regulation of DA uptake by D(2) dopamine receptors (D(2)R) has been reported. The high affinity of DA and other DAT substrates for the D(2)R, however, has complicated investigation of the intracellular mechanisms mediating this effect. The present studies used the fluorescent DAT substrate, 4-[4-(diethylamino)-styryl]-N-methylpyridinium iodide (ASP(+)) with live cell imaging techniques to identify the role of two D(2)R-linked signaling pathways, extracellular signal-regulated kinases 1 and 2 (ERK1/2), and phosphoinositide 3 kinase (PI3K) in mediating D(2)R regulation of DAT. Addition of the D(2)/D(3) receptor agonist quinpirole (0.1-10 muM) to human embryonic kidney cells coexpressing human DAT and D(2) receptor (short splice variant, D(2S)R) induced a rapid, concentration-dependent and pertussis toxin-sensitive increase in ASP(+) accumulation. The D(2)/D(3) agonist (S)-(+)-(4aR, 10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride (PD128907) also increased ASP(+) accumulation. D(2S)R activation increased phosphorylation of ERK1/2 and Akt, a major target of PI3K. The mitogen-activated protein kinase kinase inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) prevented the quinpirole-evoked increase in ASP(+) accumulation, whereas inhibition of PI3K was without effect. Fluorescence flow cytometry and biotinylation studies revealed a rapid increase in DAT cell-surface expression in response to D(2)R stimulation. These experiments demonstrate that D(2S)R stimulation increases DAT cell surface expression and therefore enhances substrate clearance. Furthermore, they show that the increase in DAT function is ERK1/2-dependent but PI3K-independent. Our data also suggest the possibility of a direct physical interaction between DAT and D(2)R. Together, these results suggest a novel mechanism by which D(2S)R autoreceptors may regulate DAT in the central nervous system.
    Document Type:
    Reference
    Product Catalog Number:
    MAB369
    Product Catalog Name:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. 17244647

    Previously, we have shown that Wnt-5a strongly regulates dopaminergic neuron differentiation by inducing phosphorylation of Dishevelled (Dvl). Here, we identify additional components of the Wnt-5a-Dvl pathway in dopaminergic cells. Using in vitro gain-of-function and loss-of-function approaches, we reveal that casein kinase 1 (CK1) delta and CK1epsilon are crucial for Dvl phosphorylation by non-canonical Wnts. We show that in response to Wnt-5a, CK1epsilon binds Dvl and is subsequently phosphorylated. Moreover, in response to Wnt-5a or CK1epsilon, the distribution of Dvl changed from punctate to an even appearance within the cytoplasm. The opposite effect was induced by a CK1epsilon kinase-dead mutant or by CK1 inhibitors. As expected, Wnt-5a blocked the Wnt-3a-induced activation of beta-catenin. However, both Wnt-3a and Wnt-5a activated Dvl2 by a CK1-dependent mechanism in a cooperative manner. Finally, we show that CK1 kinase activity is necessary for Wnt-5a-induced differentiation of primary dopaminergic precursors. Thus, our data identify CK1 as a component of Wnt-5a-induced signalling machinery that regulates dopaminergic differentiation, and suggest that CK1delta/epsilon-mediated phosphorylation of Dvl is a common step in both canonical and non-canonical Wnt signalling.
    Document Type:
    Reference
    Product Catalog Number:
    AB1603
    Product Catalog Name:
    Anti-Phosphoserine Antibody
  • The tyrosine phosphatase STEP mediates AMPA receptor endocytosis after metabotropic glutamate receptor stimulation. 18923032

    Although it is well established that AMPA receptor (AMPAR) trafficking is a central event in several forms of synaptic plasticity, the mechanisms that regulate the surface expression of AMPARs are poorly understood. Previous work has shown that striatal-enriched protein tyrosine phosphatase (STEP) mediates NMDAR endocytosis. This protein tyrosine phosphatase is enriched in the synapses of the striatum, hippocampus, cerebral cortex, and other brain regions. In the present investigation, we have explored whether STEP also regulates AMPAR internalization. We found that (RS)-3,5-dihydroxyphenylglycine (DHPG) stimulation triggered a dose-dependent increase in STEP translation in hippocampal slices and synaptoneurosomes, a process that requires stimulation of mGluR5 (metabotropic glutamate receptor 5) and activation of mitogen-activated protein kinases and phosphoinositide-3 kinase pathways. DHPG-induced AMPAR internalization and tyrosine dephosphorylation of GluR2 (glutamate receptor 2) was blocked by a substrate-trapping TAT-STEP [C/S] protein in hippocampal slices and cultures. Moreover, DHPG-triggered AMPAR internalization was abolished in STEP knock-out mice and restored after replacement of wild-type STEP. These results suggest a role for STEP in the regulation of AMPAR trafficking.
    Document Type:
    Reference
    Product Catalog Number:
    LP1
    Product Catalog Name:
    VLDL, human
  • Essential role for class II phosphoinositide 3-kinase alpha-isoform in Ca2+-induced, Rho- and Rho kinase-dependent regulation of myosin phosphatase and contraction in iso ... 17179444

    The laser confocal fluorescent microscope-based observation of contractile responses in green fluorescent protein-expressing differentiated vascular smooth muscle cells, combined with the RNA interference-mediated gene-silencing technique, allowed us to determine the role of phosphoinositide 3-kinase (PI3K) class II alpha-isoform (PI3K-C2alpha) as a novel, Ca2+-dependent regulator of myosin light-chain phosphatase (MLCP) and contraction. The Ca2+-ionophore ionomycin induced a robust contractile response with an increase in the intracellular free Ca2+ concentration ([Ca2+]i). The PI3K-C2alpha-specific short interfering RNA (siRNA) induced a selective and marked reduction in PI3K-C2alpha protein expression. The siRNA-mediated knockdown of PI3K-C2alpha, but not class I PI3K p110alpha, suppressed ionomycin-induced contraction without altering Ca2+-mobilization. PI3K-C2alpha is uniquely less sensitive to the PI3K inhibitor 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002) than the other PI3K members, including p110alpha. Ionomycin-induced contraction was inhibited only by a relatively high concentration of LY294002. Consistent with our previous observations showing that ionomycin and membrane depolarization induced Rho activation in vascular smooth muscle tissues in a Ca2+-dependent manner, ionomycin-induced contraction was dependent on Rho and Rho-kinase. Ionomycin induced phosphorylation of the MLCP-regulatory subunit myosin targeting protein 1(MYPT1) at Thr850 and the 20-kDa myosin light chain (MLC) in a Rho kinase-dependent manner. Knockdown of PI3K-C2alpha suppressed phosphorylation of both MYPT1 and MLC. The receptor agonist noradrenaline, which induced a rapid increase in the [Ca2+]i and Ca2+-dependent contraction, stimulated phosphorylation of MYPT1 and MLC, which was also dependent on Ca2+, PI3K-C2alpha, and Rho-kinase. These observations indicate that PI3K-C2alpha is necessary for Ca2+-induced Rho- and Rho kinase-dependent negative regulation of MLCP and consequently MLC phosphorylation and contraction.
    Document Type:
    Reference
    Product Catalog Number:
    36-003
    Product Catalog Name:
    Anti-phospho-MYPT1 (Thr850) Antibody
  • Nicotine-Induced Structural Plasticity in Mesencephalic Dopaminergic Neurons Is Mediated by Dopamine D3 Receptors and Akt-mTORC1 Signaling. 23543412

    Although long-term exposure to nicotine is highly addictive, one beneficial consequence of chronic tobacco use is a reduced risk for Parkinson's disease. Of interest, these effects both reflect structural and functional plasticity of brain circuits controlling reward and motor behavior and, specifically, recruitment of nicotinic acetylcholine receptors (nAChR) in mesencephalic dopaminergic neurons. Because the underlying cellular mechanisms are poorly understood, we addressed this issue with use of primary cultures of mouse mesencephalic dopaminergic neurons. Exposure to nicotine (1-10 μM) for 72 hours in vitro increased dendritic arborization and soma size in primary cultures. These effects were blocked by mecamylamine and dihydro-β-erythroidine, but not methyllycaconitine. The involvement of α4β2 nAChR was supported by the lack of nicotine-induced structural remodeling in neurons from α4 null mutant mice (KO). Challenge with nicotine triggered phosphorylation of the extracellular signal-regulated kinase (ERK) and the thymoma viral proto-oncogene (Akt), followed by activation of the mammalian target of rapamycin complex 1 (mTORC1)-dependent p70 ribosomal S6 protein kinase. Upstream pathway blockade using the phosphatidylinositol 3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hydrochloride] resulted in suppression of nicotine-induced phosphorylations and structural plasticity. These effects were dependent on functional DA D3 receptor (D3R), because nicotine was inactive both in cultures from D3R KO mice and after pharmacologic blockade with D3R antagonist trans-N-4-2-(6-cyano-1,2,3, 4-tetrahydroisoquinolin-2-yl)ethylcyclohexyl-4-quinolinecarboxamide (SB-277011-A) (50 nM). Finally, exposure to nicotine in utero (5 mg/kg/day for 5 days) resulted in increased soma area of DAergic neurons of newborn mice, effects not observed in D3 receptor null mutant mice mice. These findings indicate that nicotine-induced structural plasticity at mesencephalic dopaminergic neurons involves α4β2 nAChRs together with dopamine D3R-mediated recruitment of ERK/Akt-mTORC1 signaling.
    Document Type:
    Reference
    Product Catalog Number:
    AB152
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody
  • DNA-Dependent Protein Kinase and Ataxia Telangiectasia Mutated (ATM) Promote Cell Survival in Response to NK314, a Topoisomerase II{alpha} Inhibitor. 21546556

    4-Hydroxy-5-methoxy-2,3-dihydro-1H-[1,3]benzodioxolo[5,6-c]pyrrolo[1,2-f]-phenanthridium chloride (NK314) is a benzo[c] phenanthridine alkaloid that inhibits topoisomerase IIα, leading to the generation of DNA double-strand breaks (DSBs) and activating the G(2) checkpoint pathway. The purpose of the present studies was to investigate the DNA intercalating properties of NK314, to evaluate the DNA repair mechanisms activated in cells that may lead to resistance to NK314, and to develop mechanism-based combination strategies to maximize the antitumor effect of the compound. A DNA unwinding assay indicated that NK314 intercalates in DNA, a property that likely cooperates with its ability to trap topoisomerase IIα in its cleavage complex form. The consequence of this is the formation of DNA DSBs, as demonstrated by pulsed-field gel electrophoresis and H2AX phosphorylation. Clonogenic assays demonstrated a significant sensitization in NK314-treated cells deficient in DNA-dependent protein kinase (DNA-PK) catalytic subunit, Ku80, ataxia telangiectasia mutated (ATM), BRCA2, or XRCC3 compared with wild-type cells, indicating that both nonhomologous end-joining and homologous recombination DNA repair pathways contribute to cell survival. Furthermore, both the DNA-PK inhibitor 8-(4-dibenzothienyl)-2-(4-morpholinyl)-4H-1-benzopyran-4-one (NU7441) and the ATM inhibitor 2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one (KU55933) significantly sensitized cells to NK314. We conclude that DNA-PK and ATM contribute to cell survival in response to NK314 and could be potential targets for abrogating resistance and maximizing the antitumor effect of NK314.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Regulation of glycinergic and GABAergic synaptogenesis by brain-derived neurotrophic factor in developing spinal neurons. 17306467

    Brain-derived neurotrophic factor (BDNF) effects on the establishment of glycinergic and GABAergic transmissions in mouse spinal neurons were examined using combined electrophysiological and calcium imaging techniques. BDNF (10 ng/ml) caused a significant acceleration in the onset of synaptogenesis without large effects on the survival of these neurons. Amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) associated to activation of glycine and GABA(A) receptors were augmented in neurons cultured with BDNF. The neurotrophin effect was blocked by long term tetrodotoxin (TTX) addition suggesting a dependence on neuronal activity. In addition, BDNF caused a significant increase in glycine- and GABA-evoked current densities that partly explains the increase in synaptic transmission. Presynaptic mechanisms were also involved in BDNF effects since triethylammonium(propyl)-4-(2-(4-dibutylamino-phenyl)vinyl)pyridinium (FM1-43) destaining with high K(+) was augmented in neurons incubated with the neurotrophin. The effects of BDNF were mediated by receptor tyrosine kinase B (TrkB) and mitogen-activated protein kinase kinase (MEK) activation since culturing neurons with either (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'- kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (K252a) or 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) blocked the augmentation in synaptic activity induced by the neurotrophin.
    Document Type:
    Reference
    Product Catalog Number:
    AB1779
    Product Catalog Name:
    Anti-Brain Derived Neurotrophic Factor Antibody
  • «
  • <
  • 1
  • >
  • »