Millipore Sigma Vibrant Logo
 

inhibitors+or+small+molecules


51 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (36)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (36)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Developing Spindlin1 small-molecule inhibitors by using protein microarrays. 28504676

    The discovery of inhibitors of methyl- and acetyl-binding domains has provided evidence for the 'druggability' of epigenetic effector molecules. The small-molecule probe UNC1215 prevents methyl-dependent protein-protein interactions by engaging the aromatic cage of MBT domains and, with lower affinity, Tudor domains. Using a library of tagged UNC1215 analogs, we screened a protein-domain microarray of human methyllysine effector molecules to rapidly detect compounds with new binding profiles with either increased or decreased specificity. Using this approach, we identified a compound (EML405) that acquired a novel interaction with the Tudor-domain-containing protein Spindlin1 (SPIN1). Structural studies facilitated the rational synthesis of SPIN1 inhibitors with increased selectivity (EML631-633), which engage SPIN1 in cells, block its ability to 'read' H3K4me3 marks and inhibit its transcriptional-coactivator activity. Protein microarrays can thus be used as a platform to 'target-hop' and identify small molecules that bind and compete with domain-motif interactions.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Inhibition of HDACs-EphA2 Signaling Axis with WW437 Demonstrates Promising Preclinical Antitumor Activity in Breast Cancer. 29759486

    Histone deacetylase inhibitors (HDACi) are small molecules targeting epigenetic enzymes approved for hematologic neoplasms, which have also demonstrated clinical activities in solid tumors. In our present study, we screened our internal compound library and discovered a novel HDACi, WW437, with potent anti-breast cancer ability in vitro and in vivo. WW437 significantly inhibited phosphorylated EphA2 and EphA2 expression. Further study demonstrated WW437 blocked HDACs-EphA2 signaling axis in breast cancer. In parallel, we found that EphA2 expression positively correlates with breast cancer progression; and combined use of WW437 and an EphA2 inhibitor (ALW-II-41-27) exerted more remarkable effect on breast cancer growth than either drug alone. Our findings suggested inhibition of HDACs-EphA2 signaling axis with WW437 alone or in combination with other agents may be a promising therapeutic strategy for advanced breast cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • BRD4 Inhibition Is Synthetic Lethal with PARP Inhibitors through the Induction of Homologous Recombination Deficiency. 29533782

    Poly(ADP-ribose) polymerase inhibitors (PARPi) are selectively active in cells with homologous recombination (HR) deficiency (HRD) caused by mutations in BRCA1, BRCA2, and other pathway members. We sought small molecules that induce HRD in HR-competent cells to induce synthetic lethality with PARPi and extend the utility of PARPi. We demonstrated that inhibition of bromodomain containing 4 (BRD4) induced HRD and sensitized cells across multiple tumor lineages to PARPi regardless of BRCA1/2, TP53, RAS, or BRAF mutation status through depletion of the DNA double-stand break resection protein CtIP (C-terminal binding protein interacting protein). Importantly, BRD4 inhibitor (BRD4i) treatment reversed multiple mechanisms of resistance to PARPi. Furthermore, PARPi and BRD4i are synergistic in multiple in vivo models.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-10086
    Nombre del producto:
    EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit
  • Prognostic value of rho GTPases and rho guanine nucleotide dissociation inhibitors in human breast cancers. 14695145

    PURPOSE: Rho family members are small GTPases that are known to regulate malignant transformation and motility of cancer cells. The activities of Rhos are regulated by molecules such as guanine nucleotide dissociation inhibitors (GDIs). This study determined the levels of expression and the distribution of Rho-A, -B, -C, and -G, and Rho-6, -7, and -8, as well as Rho-GDI-beta, and Rho-GDI-gamma, in breast cancer and assessed their prognostic value. EXPERIMENTAL DESIGN: The distribution and location of Rhos and RhoGDIs were assessed using immunohistochemical staining of frozen sections. The levels of transcripts of these molecules were determined using a real-time quantitative PCR. Levels of expression were analyzed against nodal involvement and distant metastasis, grade, and survival over a 6-year follow-up period. RESULTS: The levels of Rho-C, Rho-6, and Rho-G were significantly higher in breast cancer tissues (n = 120) than in background normal tissues (n = 32). However, the level of Rho-A and -B and rho-7 and -8 was found to be similar in tumor and normal tissues. Immunohistochemical staining revealed the high level of staining of Rho-C protein in tumor cells. The levels of Rho-GDI-gamma transcripts were found to be significantly lower in tumor tissues than in normal tissues (P < 0.05 and P < 0.001, respectively). Node-positive tumors have significantly higher levels of Rho-C and Rho-G, and lower levels of Rho-GDI and Rho-GDI-gamma transcripts, than do node-negative tumors. Significantly higher levels of Rho-C and Rho-G were seen in patients who died of breast cancer than in those who remained disease free. Patients with recurrent disease, with metastasis or who died of breast cancer, also exhibited higher levels of Rho-6 but lower levels of Rho-GDI-gamma. Higher-grade tumors were also associated with low levels of Rho-GDI and Rho-GDI-gamma. CONCLUSIONS: Raised levels of Rho-C, Rho-G and Rho-6 and reduced expression of Rho-GDI and -GDI-gamma in breast tumor tissues are correlated with the nodal involvement and metastasis. This suggests that the expression of Rhos and Rho-GDIs in breast cancer is unbalanced and that this disturbance has clinical significance in breast cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. 22771460

    Long-term memory formation is known to be critically dependent upon de novo gene expression in the brain. As a consequence, pharmacological enhancement of the transcriptional processes mediating long-term memory formation provides a potential therapeutic strategy for cognitive disorders involving aberrant neuroplasticity. Here we focus on the identification and characterization of small molecule inhibitors of histone deacetylases (HDACs) as enhancers of CREB (cAMP response element-binding protein)-regulated transcription and modulators of chromatin-mediated neuroplasticity. Using a CREB reporter gene cell line, we screened a library of small molecules structurally related to known HDAC inhibitors leading to the identification of a probe we termed crebinostat that produced robust activation of CREB-mediated transcription. Further characterization of crebinostat revealed its potent inhibition of the deacetylase activity of recombinant class I HDACs 1, 2, 3, and class IIb HDAC6, with weaker inhibition of the class I HDAC8 and no significant inhibition of the class IIa HDACs 4, 5, 7, and 9. In cultured mouse primary neurons, crebinostat potently induced acetylation of both histone H3 and histone H4 as well as enhanced the expression of the CREB target gene Egr1 (early growth response 1). Using a hippocampus-dependent, contextual fear conditioning paradigm, mice systemically administered crebinostat for a ten day time period exhibited enhanced memory. To gain insight into the molecular mechanisms of memory enhancement by HDAC inhibitors, whole genome transcriptome profiling of cultured mouse primary neurons treated with crebinostat, combined with bioinformatic analyses of CREB-target genes, was performed revealing a highly connected protein-protein interaction network reflecting modules of genes important to synaptic structure and plasticity. Consistent with these findings, crebinostat treatment increased the density of synapsin-1 punctae along dendrites in cultured neurons. Finally, crebinostat treatment of cultured mouse primary neurons was found to upregulate Bdnf (brain-derived neurotrophic factor) and Grn (granulin) and downregulate Mapt (tau) gene expression-genes implicated in aging-related cognitive decline and cognitive disorders. Taken together, these results demonstrate that crebinostat provides a novel probe to modulate chromatin-mediated neuroplasticity and further suggests that pharmacological optimization of selective of HDAC inhibitors may provide an effective therapeutic approach for human cognitive disorders. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. 19589925

    The JAK(V617F) mutation is responsible for the majority of breakpoint cluster region (BCR)/Abelson (ABL)-negative myeloproliferative disorders. Ongoing clinical trials of Janus kinase 2 (JAK2) inhibitors in myeloproliferative disorder patients use small molecules targeting both wild-type and mutated JAK2. To selectively target malignant cells, we developed JAK2(V617F)-specific small interfering RNAs or short hairpin RNAs. Expression of these RNAs in cell lines or CD34(+) cells from patients reduced JAK2(V617F)-driven autonomous cell proliferation. Mechanisms of inhibition involved selective JAK2(V617F) protein down-regulation, and consequently, decrease in signal transducer and activator of transcription 5 phosphorylation, cell-cycle progression, and cell survival. However, the addition of high concentrations of cytokines to cell lines or erythropoietin to patient cells greatly reduced growth inhibition. Similarly, the efficacy of a JAK2 small molecule inhibitor on cell line and patient cell proliferation dose dependently decreased with the addition of cytokines. Our results demonstrate that it is possible to specifically target JAK2(V617F) by RNA interference (RNAi) strategies. In addition, cytokines partially reverse the inhibition induced by both RNAi and small molecule approaches. This strongly suggests that patient cytokine levels in current JAK2 inhibitor clinical trials modulate the outcome of these therapies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-321
    Nombre del producto:
    Anti-Phosphotyrosine Antibody, clone 4G10®
  • Small-molecule inhibitors of the protein methyltransferase SET7/9 identified in a high-throughput screen. 22772057

    Aberrant expression of chromatin-modifying enzymes (CMEs) is associated with a range of human diseases, including cancer. CMEs are now an important target area in drug discovery. Although the role that histone and protein (lysine) methyltransferases (PMTs) play in the regulation of transcription and cell growth is increasingly recognized, few small-molecule inhibitors of this class of enzyme have been reported. Here we describe an assay suitable for primary compound screening for the identification of PMT inhibitors. The assay followed the methylation of histones in the presence of the PMT SET7/9 and the radioactive cofactor S-adenosyl-methionine using scintillating microplates (FlashPlate) and was used to screen approximately 65 000 compounds (% coefficient of variation = 10%; Z' = 0.6). The hits identified from a library of more than 63 000 diverse small molecules included a series of rhodanine compounds with micromolar activity. A screen of the National Cancer Institute Diversity Set (2000 compounds) identified an orsein derivative that inhibited SET7/9 (~20 µM) and showed modest growth inhibition associated with the expected cellular phenotype of reduced histone methylation in a human tumor cell line. The assay represents a useful tool for the identification of inhibitors of PMT activity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-599
    Nombre del producto:
    Anti-acetyl-Histone H3 Antibody
  • Structurally Designed trans-2-Phenylcyclopropylamine Derivatives Potently Inhibit Histone Demethylase LSD1/KDM1 , , ( section sign). 20568732

    Lysine-specific demethylase 1 (LSD1/KDM1) demethylates histone H3, in addition to tumor suppressor p53 and DNA methyltransferase 1 (Dnmt1), thus regulating eukaryotic gene expression by altering chromatin structure. Specific inhibitors of LSD1 are desired as anticancer agents, because LSD1 aberrations are associated with several cancers, and LSD1 inhibition restores the expression of abnormally silenced genes in cancerous cells. In this study, we designed and synthesized several candidate compounds to inhibit LSD1, based on the structures of LSD1 and monoamine oxidase B (MAO-B), in complex with an antidepressant tranylcypromine (2-PCPA) derivative. Compound S2101 exhibited stronger LSD1 inhibition than tranylcypromine and the known small LSD1 inhibitors in LSD1 demethylation assays, with a k(inact)/K(I) value of 4560 M(-1) s(-1). In comparison with tranylcypromine, the compound displayed weaker inhibition to the monoamine oxidases. The inhibition modes of the two 2-PCPA derivatives, 2-PFPA and S1201, were identified by determination of the inhibitor-bound LSD1 structures, which revealed the enhanced stability of the inhibitor-FAD adducts by their interactions with the surrounding LSD1 residues. These molecules are potential pharmaceutical candidates for cancer or latent virus infection, as well as research tools for LSD1-related biological investigations.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-030
    Nombre del producto:
    Anti-dimethyl-Histone H3 (Lys4) Antibody
  • Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. 22611017

    Inhibiting angiogenesis has become an important therapeutic strategy for cancer treatment but, like other current targeted therapies, benefits experienced for late-stage cancers can be curtailed by inherent refractoriness or by acquired drug resistance, requiring a need for better mechanistic understanding of such effects. Numerous preclinical studies have demonstrated that VEGF pathway inhibitors suppress primary tumour growth and metastasis. However, it has been recently reported that short-term VEGF and VEGFR inhibition can paradoxically accelerate tumour invasiveness and metastasis in certain models. Here we comprehensively compare the effects of both antibody and small molecule receptor tyrosine kinase (RTK) inhibitors targeting the VEGF-VEGFR pathway, using short-term therapy in various mouse models of metastasis. Our findings demonstrate that antibody inhibition of VEGF pathway molecules does not promote metastasis, in contrast to selected small molecule RTK inhibitors at elevated-therapeutic drug dosages. In particular, a multi-targeted RTK inhibitor, sunitinib, which most profoundly potentiated metastasis, also increased lung vascular permeability and promoted tumour cell extravasation. Mechanistically, sunitinib, but not anti-VEGF treatment, attenuated endothelial barrier function in culture and caused a global inhibition of protein tyrosine phosphorylation, including molecules important for maintaining endothelial cell-cell junctions. Together these findings indicate that, rather than a specific consequence of inhibiting the VEGF signalling pathway, pharmacological inhibitors of the VEGF pathway can have dose- and drug class-dependent side-effects on the host vasculature. These findings also advocate for the continued identification of mechanisms of resistance to anti-angiogenics and for therapy development to overcome it. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. 16204079

    The identification of small molecules that inhibit the sequence-specific binding of transcription factors to DNA is an attractive approach for regulation of gene expression. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that controls genes involved in glycolysis, angiogenesis, migration, and invasion, all of which are important for tumor progression and metastasis. To identify inhibitors of HIF-1 DNA-binding activity, we expressed truncated HIF-1alpha and HIF-1beta proteins containing the basic-helix-loop-helix and PAS domains. Expressed recombinant HIF-1alpha and HIF-1beta proteins induced a specific DNA-binding activity to a double-stranded oligonucleotide containing a canonical hypoxia-responsive element (HRE). One hundred twenty-eight compounds previously identified in a HIF-1-targeted cell-based high-throughput screen of the National Cancer Institute 140,000 small-molecule library were tested in a 96-well plate ELISA for inhibition of HIF-1 DNA-binding activity. One of the most potent compounds identified, echinomycin (NSC-13502), a small-molecule known to bind DNA in a sequence-specific fashion, was further investigated. Electrophoretic mobility shift assay experiments showed that NSC-13502 inhibited binding of HIF-1alpha and HIF-1beta proteins to a HRE sequence but not binding of the corresponding proteins to activator protein-1 (AP-1) or nuclear factor-kappaB (NF-kappaB) consensus sequences. Interestingly, chromatin immunoprecipitation experiments showed that NSC-13502 specifically inhibited binding of HIF-1 to the HRE sequence contained in the vascular endothelial growth factor (VEGF) promoter but not binding of AP-1 or NF-kappaB to promoter regions of corresponding target genes. Accordingly, NSC-13502 inhibited hypoxic induction of luciferase in U251-HRE cells and VEGF mRNA expression in U251 cells. Our results indicate that it is possible to identify small molecules that inhibit HIF-1 DNA binding to endogenous promoters.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4