Millipore Sigma Vibrant Logo
 

spin+coating


3 Results Advanced Search  
Showing
Products (0)
Documents (3)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro. 17296219

    Although synthetic biomaterials have a wide range of promising applications in regenerative medicine and tissue engineering, there is limited insight into the basic materials properties that influence cellularisation events. The aim of this study was to investigate the influence of the physical properties of polyester films on the adherence and growth of normal human urothelial and urinary smooth muscle (SM) cells, as part of a programme for the development of potential biomaterials for bladder tissue engineering. Films of different thickness were produced by spin coating from solution. Cell attachment and proliferation were analysed and revealed a reproducible and significant growth advantage over the initial 7 days for both cell types on poly(lactide-co-glycolide) (PLGA) versus poly(epsilon-caprolactone) (PCL), and on thick versus thin films. In order to understand the basis of the variation in cell growth, the surface morphology, degradation behaviour and mechanical properties of the films were investigated. The pattern of cell attachment and growth was found to be unrelated to surface topography and no distinction in film degradation behaviour was found to account for differences in cell growth, except at late time points (14 days), where degradation of thin PLGA films became significant. By contrast, the flexural loss and storage moduli were found to be reduced in films composed of PLGA versus PCL, and also as film thickness increased, indicating that mechanical properties of biomaterials can influence cell growth. We conclude that elastic modulus is relevant to biology at the cellular scale and may also be influential at the tissue/organ level, and is a critical parameter to be considered during development of synthetic biomaterials for tissue engineering.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1952
  • Mesoporous silica-supported lipid bilayers (protocells) for DNA cargo delivery to the spinal cord. 23517784

    Amorphous mesoporous silica nanoparticles ('protocells') that support surface lipid bilayers recently characterized in vitro as carrier constructs for small drug and DNA delivery are reported here as highly biocompatible both in vitro and in vivo, involving the brain and spinal cord following spinal delivery into the lumbosacral subarachnoid space (intrathecal; i.t.). Specifically, positively charged, 1, 2-Dioleoyl-3-Trimethylammonium-Propane (DOTAP)-cholesterol (DOTAP:Chol) liposome-formulated protocells revealed stable in vitro cargo release kinetics and cellular interleukin-10 (IL-10) transgene transfection. Recent approaches using synthetic non-viral vector platforms to deliver the pain-suppressive therapeutic transgene, IL-10, to the spinal subarachnoid space have yielded promising results in animal models of peripheral neuropathy, a condition involving aberrant neuronal communication within sensory pathways in the nervous system. Non-viral drug and gene delivery protocell platforms offer potential flexibility because cargo release-rates can be pH-dependent. We report here that i.t. delivery of protocells, with modified chemistry supporting a surface coating of DOTAP:Chol liposomes and containing the IL-10 transgene, results in functional suppression of pain-related behavior in rats for extended periods. This study is the first demonstration that protocell vectors offer amenable and enduring in vivo biological characteristics that can be applied to spinal gene delivery.
    Document Type:
    Reference
    Product Catalog Number:
    AB5804
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
  • Hyaluronan-CD44 pathway regulates orientation of mitotic spindle in normal epithelial cells. 18513329

    Orientation of mitotic spindle and cell division axis can impact normal physiological processes, including epithelial tissue branching and neuron generation by asymmetric cell division. Microtubule dynamics and its interaction with cortical proteins regulate the orientation of mitotic spindle axis. However, the nature of extracellular signals that control proper orientation of mitotic spindle axis is largely unclear. Here, we show that signals from two distinct surface contact, bi-surface-contact, sites are required for the orientation of mitotic spindle axis in normal epithelial cells. We identified apical and basal surface-membrane as required bi-surface-contact sites. We showed that high molecular weight (HMW) hyaluronan (HA)-CD44 signaling from the apical surface-membrane regulated the orientation of mitotic spindle axis to align parallel to the basal extracellular matrix (ECM). The same effect was achieved by fibronectin-integrin alphavbeta6 signaling from the basal surface-membrane or by inhibition of ROCK activity. On the contrary, HMW HA-CD44 signaling from the basal surface-membrane regulated the orientation of mitotic spindle axis to align oblique-perpendicular to the basal ECM. We also found that microtubule dynamics is required for HMW HA-CD44 mediated regulation of mitotic spindle orientation. Our findings thus provide a novel mechanism for the regulation of mitotic spindle orientation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1957
    Product Catalog Name:
    Anti-Integrin β3 Antibody, clone 25E11
  • «
  • <
  • 1
  • >
  • »