Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
The Kjeldahl method is an analytical method for the quantitative determination of nitrogen in chemical substances. It was originally developed by Johan Kjeldahl in 1883 to measure the amount of protein in the grain used to produce beer. It is a standard method for estimating the protein content in foods, feed, beverages, and many other samples. One drawback of this method is that it does not give a measure of true protein content, as it measures non-protein nitrogen in addition to the nitrogen in proteins. The Kjeldahl method is also used to measure nitrogen in organic and inorganic samples in the chemical industry, the pharmaceutical industry and in environmental samples.
The method comprises three main steps:
Digestion The sample is heated with concentrated sulfuric acid, which decomposes the organic substances by oxidation to liberate the reduced nitrogen as ammonium sulfate. Potassium sulfate is then added in order to increase the boiling point of the medium.
Distillation The solution is then distilled with sodium hydroxide, which converts the ammonium salt to ammonia.
Titration The amount of ammonia present (hence the amount of nitrogen present in the sample) is usually determined by titration. A known amount of acid solution is added to the receiving flask. The excess acid is back-titrated using a base. Methyl orange is used as a pH indicator. Boric acid may be used for the titration.