Le fait de fermer ne sauvegardera pas votre configuration à moins que vous n'ajoutiez l'article à votre Panier d'achat ou à vos Favoris.
Cliquer sur OK pour fermer l'outil MILLIPLEX® MAP ou sur Annuler pour retourner à votre sélection.
Choisissez des Panels configurables & des Kits préconfigurés - OU - des MAPmate™ de signalisation cellulaire
Concevez vos kits MILLIPLEX® MAP et obtenez leur prix.
Panels configurables & Kits préconfigurés
Notre large gamme est constituée de panels multiplex qui vous permettent de choisir, au sein d'un panel, les analytes qui répondent le mieux à vos besoins. Sur un autre onglet, vous pouvez choisir un format cytokine préconfiguré ou un kit Simplex.
Kits de signalisation cellulaire & MAPmate™
Choisissez des kits préconfigurés qui permettent d'explorer l'ensemble des voies ou des processus. Ou concevez vos propres kits en choisissant des Simplex MAPmate™ et en suivant les instructions fournies.
Les MAPmate™ suivants ne peuvent pas être utilisés ensemble : -des MAPmate™ qui nécessitent des tampons différents -des paires de MAPmate™ totaux et phospho-spécifiques, par ex. GSK3β total et GSK3β (Ser 9) -des MAPmate™ PanTyr et spécifiques d'un site, par ex. Récepteur Phospho-EGF et phospho-STAT1 (Tyr701) -Plus d'un phospho-MAPmate™ pour une seule cible (Akt, STAT3). -GAPDH et β-Tubuline ne peuvent pas être utilisés avec les kits ou les MAPmate™ contenant panTyr.
.
Référence
Guide d'achat
Qté
Liste
Cet article a été ajouté à vos favoris.
Sélectionner une espèce, un type de panel, un kit ou un type d'échantillon
Pour commencer à concevoir votre kit MILLIPLEX® MAP, sélectionnez une espèce, un type de panel ou un kit d'intérêt.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Cet article a été ajouté à vos favoris.
Espèce
Type de panel
Kit sélectionné
Qté
Référence
Guide d'achat
Qté
Prix tarif
96-Well Plate
Qté
Référence
Guide d'achat
Qté
Prix tarif
Ajouter des réactifs supplémentaires (Un kit "Buffer and Detection Kit" est nécessaire pour une utilisation avec les MAPmate™)
Qté
Référence
Guide d'achat
Qté
Prix tarif
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Option de gain de place Nos clients qui commandent plusieurs kits peuvent choisir d'économiser de l'espace de stockage en éliminant l'emballage de chaque kit et de recevoir les composants de leur essai multiplex conditionnés sous poches en plastique pour un stockage plus compact.
Cet article a été ajouté à vos favoris.
Ce produit a été ajouté à votre panier.
Vous pouvez maintenant concevoir un autre kit personnalisé, choisir un kit pré-configuré, régler vos achats ou fermer l'outil de commande.
Electrophoresis is the migration of a charged particle under the influence of an electric field. Positively charged particles migrate towards the cathode, and the negatively charged ones towards the anode. Their rate of migration depends on the strength of the field, on the net charge, size and shape of the particles (i.e., molecules) and also on the ionic strength, viscosity and temperature of the medium in which the molecules are moving. As an analytical tool, electrophoresis is simple, rapid and highly sensitive. Since many important biological molecules, such as nucleic acids and proteins, have ionizable groups, they exist as electrically charged species at any given pH. As such, electrophoresis is one of the most widely-used techniques in biochemistry and molecular biology.
Proteins are amphoteric compounds. Their net charge is determined by the pH of their environment. At pH above its isoelectric point, a protein has a net negative charge and migrates towards the anode in an electrical field. Below its isoelectric point, the protein is positively charged and migrates towards the cathode. In addition, the net charge carried by a protein is independent of its size. That is, the charge carried per unit mass of molecule is different from one protein to the other. At a given pH therefore, and under non-denaturing conditions (the proteins are in their native state), the electrophoretic separation of proteins is determined by both size and charge of the molecules.
The most widely used method for analyzing protein mixtures qualitatively is SDS-PAGE, which stands for sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE). Samples to be run on SDS-PAGE are first boiled in sample buffer containing β-mercaptoethanol or dithiothreitol and SDS. β-mercaptoethanol or dithiothreitol reduce the disulfide bridges that hold the proteins’ tertiary structure, and the SDS binds strongly to, and denatures, the protein. SDS is an anionic detergent which denatures proteins by "wrapping around" the polypeptide backbone. It binds to proteins fairly specifically in a mass ratio of 1.4:1, giving a negative charge to the polypeptide in proportion to its length. In denaturing SDS-PAGE separations therefore, migration is determined not by intrinsic electrical charge of the polypeptide, but by molecular weight.
Protein electrophoresis takes place within a support matrix or "gel", the most commonly used one being polyacrylamide. Normally, the gel is cast in the shape of a thin slab, with wells for loading the sample. The gel is immersed within an electrophoresis buffer that provides ions to carry a current and some type of buffer to maintain the pH at a relatively constant value. The support matrix provides a means of separating molecules by size, in that they are porous gels. A porous gel may act as a sieve by retarding, or in some cases completely obstructing, the movement of large macromolecules while allowing smaller molecules to migrate freely. The pore size in the gel can be varied by changing the concentrations of both acrylamide and bis-acrylamide used to make the gel, with larger pore sizes resulting from lower percent acrylamide. Gels of between 10 and 20% acrylamide are typically used in SDS-PAGE, where the pore size is small enough to introduce a sieving effect that contributes to the separation of proteins according to their size. Gradient gels are also used in SDS-PAGE. These are gels in which the acrylamide concentration varies uniformly from the top to the bottom of the gel, typically 5% at the top to 25% at the bottom . This means that at the top of the gel there is a large pore size (e.g., 5% acrylamide) but as the sample moves down through the gel, the pore size decreases (e.g., 20%). The advantages of gradient gels over fixed-percentage gels are that samples containing a large range of molecular weights can be separated, and proteins with very similar molecular weights can be resolved.
Proteins can also be separated using a technique called isoelectric focusing (IEF) in which separation is achieved by applying a potential difference across a gel that contains a pH gradient. This method has high resolution, being able to separate proteins that differ in their isoelectric points by as little as 0.01 pH unit. Two-dimensional polyacyrlamide gel electrophoresis (2D-PAGE) combines IEF (first dimension) and SDS-PAGE (second dimension) for a highly sophisticated analytical method for analyzing protein mixtures. Between 1000 and 3000 proteins from a cell or tissue extract can be resolved routinely using 2D-PAGE.
Once proteins are separated on a gel, they are most commonly detected on gels using the sulfated trimethylamine dye Coomassie Brilliant Blue. Silver staining is also used when greater sensitivity is required. Proteins separated on a gel may also be transferred to a membrane in a technique called Western blotting. Once transferred on the membrane, the protein(s) of interest are detected using monoclonal or polyclonal antibodies.