Skip to Content
Merck

376779

2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane

97%

Synonym(s):

(2,3,5,6-Tetrafluoro-2,5-cyclohexadiene-1,4-diylidene)dimalononitrile, 7,7,8,8-Tetracyano-2,3,5,6-tetrafluoroquinodimethane, F4TCNQ

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C12F4N4
CAS Number:
Molecular Weight:
276.15
UNSPSC Code:
12352103
NACRES:
NA.23
PubChem Substance ID:
MDL number:
Beilstein/REAXYS Number:
2157887
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI

1S/C12F4N4/c13-9-7(5(1-17)2-18)10(14)12(16)8(11(9)15)6(3-19)4-20

SMILES string

FC1=C(F)C(\C(F)=C(F)/C1=C(\C#N)C#N)=C(\C#N)C#N

InChI key

IXHWGNYCZPISET-UHFFFAOYSA-N

assay

97%

form

solid

mp

285-290 °C (lit.)

Quality Level

Looking for similar products? Visit Product Comparison Guide

Related Categories

Application

F4-TCNQ can be doped with poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) to form a hole transport material (HTL), which can be used to achieve an energy efficiency of 16% for a semi-transparent perovskite solar cell. It can be used as a p-type dopant to form a blended composite film with poly(3-hexylthiophene) (P3HT) having enhanced charge mobility, which can be potentially useful in organic photovoltaics.
F4-TCNQ is the p-type dopant for hole-only devices and field effect transistors with organic hole transport layers (HTL). It is used in the preparation of a bilayer structure of F4-TCNQ and pentacene to study improved thermoelectric performance of organic thin films.

General description

2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) is a dopant used in the fabrication of organic semiconductors. It can tune the electronic properties as its lowest unoccupied molecular orbital is at a desirable energy level required to oxidize a wide range of semiconductors.
2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) are p-type molecules, used as a strong acceptor dopant , it generates free holes.

pictograms

Skull and crossbones

signalword

Danger

Hazard Classifications

Acute Tox. 3 Dermal - Acute Tox. 3 Inhalation - Acute Tox. 3 Oral

Storage Class

6.1C - Combustible acute toxic Cat.3 / toxic compounds or compounds which causing chronic effects

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Faceshields, Gloves, type P2 (EN 143) respirator cartridges


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

Deleterious substance

pdsc

376779-25MG:4548173141497 + 376779-VAR: + 376779-100MG:4548173302430 + 376779-BULK: + 376779-5MG:4548173141503

jan


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

The chemical and structural origin of efficient p-type doping in P3HT
Duong DT, et al.
Organic Electronics, 14(5), 1330-1336 (2013)
David Kiefer et al.
Nature materials, 18(2), 149-155 (2019-01-16)
Molecular doping is a crucial tool for controlling the charge-carrier concentration in organic semiconductors. Each dopant molecule is commonly thought to give rise to only one polaron, leading to a maximum of one donor:acceptor charge-transfer complex and hence an ionization
Shrawan Roy et al.
Nano letters, 18(7), 4523-4530 (2018-06-21)
Chemical treatment using bis(trifluoromethane) sulfonimide (TFSI) was shown to be particularly effective for increasing the photoluminescence (PL) of monolayer (1L) MoS2, suggesting a convenient method for overcoming the intrinsically low quantum yield of this material. However, the underlying atomic mechanism
Sungjae Cho et al.
Nature communications, 6, 7634-7634 (2015-07-15)
Aharonov-Bohm oscillations effectively demonstrate coherent, ballistic transport in mesoscopic rings and tubes. In three-dimensional topological insulator nanowires, they can be used to not only characterize surface states but also to test predictions of unique topological behaviour. Here we report measurements
John H Burke et al.
Advanced materials (Deerfield Beach, Fla.), 31(12), e1806863-e1806863 (2019-01-31)
The electron acceptor F4TCNQ p-dopes aggregates "nanowires" of poly(3-hexylthiophene) in nonpolar solvents but does not dope unaggregated chains. The standard free energy change for the charge transfer to form an ion pair is ΔG°et = -0.21 eV. The dissociation constant

Articles

高還元性または高酸化性の化学種は、電荷キャリアの注入障壁を低減することにより、有機半導体の電気伝導率を増加させます。

溶液処理塗布した後、高品質のペンタセン膜に熱的に変換することが可能な「可溶性ペンタセン前駆体」についてご紹介します。

メルクのSpiro-MeOTAD製品「SHT-263 Solarpur®」は、世界中で広く使用されているペロブスカイト太陽電池用正孔輸送材料です。

Highly reducing or oxidizing species enhance organic semiconductor conductivity by reducing charge-carrier injection barriers.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service