Skip to Content
Merck

697745

Cobalt

Carbon coated magnetic, nanopowder, <50 nm particle size (TEM), ≥99%

Synonym(s):

Cobalt element, Cobalt-59

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
Co
CAS Number:
Molecular Weight:
58.93
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352302
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI

1S/Co

SMILES string

[Co]

InChI key

GUTLYIVDDKVIGB-UHFFFAOYSA-N

material

carbon

assay

≥99%

form

nanopowder

composition

Carbon content, <8 wt. %

magnetization

>150 emu/g, Mass saturation

resistivity

6.24 μΩ-cm, 20°C

surface area

>15 m2/g

particle size

<50 nm (TEM)

bp

2900 °C (lit.)

density

8.9 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

Quality Level

Looking for similar products? Visit Product Comparison Guide

Application

Air- and thermally-stable magnetic carbon-coated cobalt nanoparticles (nanomagnets). Carbon shell consists of approximately three graphitic layers and can be chemically functionalized using e.g. diazotization reactions.

signalword

Danger

Hazard Classifications

Acute Tox. 1 Inhalation - Acute Tox. 4 Oral - Aquatic Acute 1 - Aquatic Chronic 1 - Carc. 1B - Eye Irrit. 2 - Muta. 2 - Repr. 1B - Resp. Sens. 1 - Skin Sens. 1 - STOT RE 2

Storage Class

6.1A - Combustible acute toxic Cat. 1 and 2 / very toxic hazardous materials

wgk

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

dust mask type N95 (US), Eyeshields, Faceshields, Gloves


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

Class I Designated Chemical Substances

prtr

Group 2: Flammable solids + Metal powder + Hazardous rank II + 1st combustible solid

fsl

Substances Subject to be Indicated Names

ishl_indicated

Substances Subject to be Notified Names

ishl_notified

697745-500MG:4548173314112 + 697745-VAR: + 697745-BULK:

jan


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Alexander Schätz et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 14(27), 8262-8266 (2008-07-31)
TEMPO was grafted on graphene-coated nanobeads with a magnetic cobalt core by using a general applicable "click"-chemistry protocol. The new heterogeneous CoNP-TEMPO emerged as a highly active catalyst for the chemoselective oxidation of primary and secondary alcohols using bleach as
Chun Ghee Tan et al.
Chemical communications (Cambridge, England), (36), 4297-4299 (2008-09-20)
To develop magnetic nanomaterials applicable to organic synthesis, the Suzuki cross-coupling method was adapted to attach a range of functional groups to carbon-coated core-shell materials via commercially-available substituted arylboronic acids.
Luechinger, N.A.; Booth, N.; Heness, G.; Bandyopadhyay, S.; Grass, R.N.; Stark W.J.
Advanced Materials, 20, 3044-3044 (2008)
Covalently functionalized cobalt nanoparticles as a platform for magnetic separations in organic synthesis.
Robert N Grass et al.
Angewandte Chemie (International ed. in English), 46(26), 4909-4912 (2007-05-23)
D W Su et al.
Journal of nanoscience and nanotechnology, 13(5), 3354-3359 (2013-07-19)
Highly ordered mesoporous Co3O4 nanostructures were prepared using SBA-15 silica as hard templates. The mesoporous structures were characterized by X-ray diffraction, high resolution transmission electron microscopy, and N2 adsorption/desorption isotherm analysis. The results demonstrated that the as-prepared mesoporous Co3O4 has

Articles

バイオメディシンや磁気記録、磁気エネルギー貯蔵への応用の可能性から非常に大きな注目を集めている磁性ナノ粒子の合成法について解説します。

Magnetic materials find diverse applications from data storage to renewable energy.

Magnetic nanoparticles have attracted tremendous attention due to their novel properties and their potential applications in magnetic recording, magnetic energy storage and biomedicine.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service