Skip to Content
Merck

310328

Propylene carbonate

anhydrous, 99.7%

Synonym(s):

1,2-Propanediol cyclic carbonate, 4-Methyl-1,3-dioxolan-2-one

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Empirical Formula (Hill Notation):
C4H6O3
CAS Number:
Molecular Weight:
102.09
UNSPSC Code:
12352005
NACRES:
NA.21
PubChem Substance ID:
EC Number:
203-572-1
Beilstein/REAXYS Number:
107913
MDL number:
Assay:
99.7%
Grade:
anhydrous
Bp:
240 °C (lit.)
Vapor pressure:
0.13 mmHg ( 20 °C), 0.98 mmHg ( 50 °C)
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

InChI key

RUOJZAUFBMNUDX-UHFFFAOYSA-N

InChI

1S/C4H6O3/c1-3-2-6-4(5)7-3/h3H,2H2,1H3

SMILES string

CC1COC(=O)O1

grade

anhydrous

vapor pressure

0.13 mmHg ( 20 °C), 0.98 mmHg ( 50 °C)

assay

99.7%

form

liquid

autoignition temp.

851 °F

expl. lim.

14.3 %

impurities

<0.002% water, <0.005% water (100 mL pkg)

Quality Level

pH

7 (20 °C, 200 g/L)

bp

240 °C (lit.)

mp

−55 °C (lit.)

density

1.204 g/mL at 25 °C (lit.)

Looking for similar products? Visit Product Comparison Guide

General description

Propylene carbonate can be synthesized from propylene oxide and CO2. Optically active form of propylene carbonate can be prepared from the reaction between CO2 and racemic epoxides. Decomposition of propylene carbonate on the graphite electrode in lithium batteries results in the formation of a lithium intercalated compound.
Propylene carbonate is a cyclic carbonate that is commonly used as a solvent and as a reactive intermediate in organic synthesis. It is being considered as a potential electrochemical solvent due to its low vapor pressure, high dielectric constant and high chemical stability.

Application

Propylene carbonate may be used as a solvent for the asymmetric hydrogenation of nonfunctionalized olefins.

pictograms

Exclamation mark

signalword

Warning

hcodes

Hazard Classifications

Eye Irrit. 2

Storage Class

10 - Combustible liquids

wgk

WGK 1

flash_point_f

269.6 °F - closed cup

flash_point_c

132 °C - closed cup

ppe

Eyeshields, Gloves, type ABEK (EN14387) respirator filter


Regulatory Listings

Regulatory Listings are mainly provided for chemical products. Only limited information can be provided here for non-chemical products. No entry means none of the components are listed. It is the user’s obligation to ensure the safe and legal use of the product.

Group 4: Flammable liquids + Type 3 petroleums + Hazardous rank III + Water soluble liquid

fsl

Substances Subject to be Indicated Names

ishl_indicated

Substances Subject to be Notified Names

ishl_notified

310328-20L: + 310328-VAR: + 310328-18L: + 310328-4X2L: + 310328-PZ: + 310328-2L: + 310328-BULK: + 310328-100ML: + 310328-500ML: + 310328-1L: + 310328-6X1L: + 310328-8L:

jan


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Catalytic performance of metal oxides for the synthesis of propylene carbonate from urea and 1, 2-propanediol.
Li Q, et al.
J. Mol. Catal. A: Chem., 270(1), 44-49 (2007)
Propylene carbonate: a versatile solvent for electrochemistry and EPR.
Nelson RF & Adams RN.
J. Electroanal. Chem. Interfac. Electrochem., 13(1), 184-187 (1967)
Vincenza Modafferi et al.
Nanomaterials (Basel, Switzerland), 10(8) (2020-08-19)
The effect of the type of dopant (titanium and manganese) and of the reduced graphene oxide content (rGO, 30 or 50 wt %) of the α-Fe2O3@rGO nanocomposites on their microstructural properties and electrochemical performance was investigated. Nanostructured composites were synthesized
Xiao-Bing Lu et al.
Journal of the American Chemical Society, 126(12), 3732-3733 (2004-03-25)
This communication describes a convenient route to optically active propylene carbonate by a catalytic kinetic resolution process resulting from the coupling reaction of CO2 and racemic epoxides using simple chiral SalenCo(III)/quaternary ammonium halide catalyst systems.
The cathodic decomposition of propylene carbonate in lithium batteries.
Arakawa M and Yamaki JI.
Journal of Electroanalytical Chemistry, 219(1-2), 273-280 (1987)

Articles

固体リチウム高速イオン導電体は、より安全で高エネルギー密度の全固体電池にとって極めて重要であり、従来の電池の限界に対処するものです。

電気自動車用電池の商用化に付随する重要な技術的課題には、コスト、性能、誤用に対する安全性、寿命などがあります。

Solid-state lithium fast-ion conductors are crucial for safer, high-energy-density all-solid-state batteries, addressing conventional battery limitations.

The critical technical challenges associated with the commercialization of electric vehicle batteries include cost, performance, abuse tolerance, and lifespan.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service