製品名
MISSION® esiRNA, targeting human ATG4B
description
Powered by Eupheria Biotech
product line
MISSION®
form
lyophilized powder
esiRNA cDNA target sequence
GGCAGCCAGACAGCTACTTCAGCGTCCTCAACGCATTCATCGACAGGAAGGACAGTTACTACTCCATTCACCAGATAGCGCAAATGGGAGTTGGCGAAGGCAAGTCCATAGGCCAGTGGTACGGGCCCAACACTGTCGCCCAGGTCCTGAAGAAGCTTGCTGTCTTCGATACGTGGAGCTCCTTGGCGGTCCACATTGCAATGGACAACACTGTTGTGATGGAGGAAATCAGAAGGTTGTGCAGGACCAGCGTTCCCTGTGCAGGCGCCACTGCGTTTCCTGCAGATTCCGACCGGCACTGCAACGGATTCCCTGCCGGAGCTGAGGTCACCAACAGGCCGTCGCCATGGAGACCCCTGGTACTTCTCATTCCCCTGCGCCTGGGGCTCACGGACATCAACGAGGCCTACGT
Ensembl | human accession no.
shipped in
ambient
storage temp.
−20°C
Quality Level
Gene Information
human ... ATG4B(23192), ATG4B(23192)
関連するカテゴリー
General description
MISSION esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.
Legal Information
MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany
保管分類
10 - Combustible liquids
flash_point_f
Not applicable
flash_point_c
Not applicable
Yao-Xin Lin et al.
Biomaterials, 141, 199-209 (2017-07-10)
Autophagic therapy is regarded as a promising strategy for disease treatment. Appropriate autophagy regulations in vivo play a crucial role in translating this new concept from benchside to bedside. So far, emerging technologies are required to spatially and quantitatively monitor autophagic
Yao-Xin Lin et al.
ACS nano, 11(2), 1826-1839 (2017-01-24)
Autophagy plays a crucial role in the metabolic process. So far, conventional methods are incapable of rapid, precise, and real-time monitoring of autophagy in living objects. Herein, we describe an in situ intracellular self-assembly strategy for quantitative and temporal determination
Tianzhi Huang et al.
Cancer cell, 32(6), 840-855 (2017-12-13)
ATG4B stimulates autophagy by promoting autophagosome formation through reversible modification of ATG8. We identify ATG4B as a substrate of mammalian sterile20-like kinase (STK) 26/MST4. MST4 phosphorylates ATG4B at serine residue 383, which stimulates ATG4B activity and increases autophagic flux. Inhibition
Pei-Feng Liu et al.
Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 44(2), 728-740 (2017-11-24)
ATG4B is a cysteine protease required for autophagy, which is a cellular catabolic pathway involved in energy balance. ATG4B expression is elevated during tumor growth in certain types of cancer, suggesting that ATG4B is an attractive target for cancer therapy.
Elisabeth Corcelle-Termeau et al.
Autophagy, 12(5), 833-849 (2016-04-14)
Sphingomyelin is an essential cellular lipid that traffics between plasma membrane and intracellular organelles until directed to lysosomes for SMPD1 (sphingomyelin phosphodiesterase 1)-mediated degradation. Inactivating mutations in the SMPD1 gene result in Niemann-Pick diseases type A and B characterized by
ライフサイエンス、有機合成、材料科学、クロマトグラフィー、分析など、あらゆる分野の研究に経験のあるメンバーがおります。.
製品に関するお問い合わせはこちら(テクニカルサービス)