Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
この品目はお気に入りに追加されました。
動物種
パネルタイプ
選択したキット
数量
カタログ番号
注文内容
Qty/Pk
価格
96-Well Plate
数量
カタログ番号
注文内容
Qty/Pk
価格
その他の試薬を追加 (MAPmatesとともに使用するにはバッファーおよび検出キットが必要です)
数量
カタログ番号
注文内容
Qty/Pk
価格
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option(チェックを入れると箱詰めから袋詰めに変更となりますのでご注意ください) Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
Many animal and plant tissues have electrical properties, which can be measured with electrodes. Electrophysiology can be used to study sensory organs, muscles (in particular the heart), cells of the endocrine system, the central nervous system. Recording of voltage change or electric current may be measured on anything from an ion channel protein to an entire organ. The study of ion channels shows great promise for the development of rationally designed drugs. Brain slice preparations may be used to study neurons. In this case, artificial cerebrospinal fluid (ACSF) must be used in order to keep them viable.
Classical electrophysiology techniques involve placing electrodes into cells or biological tissue. In optical electrophysiology, voltage sensitive dyes and fluorescent proteins are used, which allow the measurement of changes in potential without disruption of the tissue studied.
Various techniques are being used in electrophysiology for intracellular recording, such as:
Voltage clamp The voltage clamp is used to measure the ion currents across a cell membrane while holding the membrane voltage at a constant level. The membrane voltage can be manipulated independently of the ionic currents, allowing the current-voltage relationships of membrane channels to be studied.
Current clamp The current clamp records the voltage difference across a cell membrane by injecting current into the cell through the recording electrode (usually a sharp micropipette).
Patch-clamp Unlike conventional intracellular recordings, which involve impaling a cell with a fine electrode, the patch clamp uses a relatively large microelectrode that is placed next to the cell. Gentle suction is applied on the small area of membrane ("patch") covered by the pipette. This technique allows the study of single or multiple ion channels in cells, and is often used to study the mechanism of action of drugs.
Many variations of these methods are being used. New technologies offer higher throughput than conventional techniques, such as planar patch clamp technology (instead of positioning the pipette on an adherent cell, a cell suspension is pipetted on a chip containing a microstructured aperture). The emergence of automated electrophysiology platforms (IonWorks, PatchXpress systems, etc.) has had a major impact on the capacity and speed of information-rich assays that can be performed. These methods are used extensively to study ion channels, which have become important targets for drug discovery. Ion channels play a critical role in nerve and muscle function. Drugs that modulate ion channels have been investigated in therapeutic areas such as neuropathic pain, cardiac arrhythmia, hypertension, local anaesthesia, stroke, Parkinson’s, obesity, epilepsy, diabetes and depression.
Extracellular recordings can also be performed, using techniques such as single unit recording, a method used to measure the activity of a single neuron in the brain of animals in vivo. Brain slices may also be used for the study of electrophysiology of neurons and local brain circuits.
Your opinion is important for us. Please let us know if the information provided was useful, if there is missing information that you would like to see or if you have experience that you would like to share with us on this topic. Please contact us by e-mail, send us feed back and we will come back to you. Contact us.