Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
NACRES:
NA.41
UNSPSC Code:
12352203
Conjugate:
unconjugated
Clone:
polyclonal
Application:
IP, WB
Species reactivity:
canine, human
Citations:
12
Technique(s):
immunoprecipitation (IP): 3-6 μg using MDCK cells., western blot: 2-4 μg/mL using MCF7 cell extracts.
Uniprot accession no.:
biological source
rabbit
conjugate
unconjugated
antibody form
affinity isolated antibody
antibody product type
primary antibodies
clone
polyclonal
form
buffered aqueous solution
mol wt
antigen ~130 kDa
species reactivity
canine, human
concentration
~1.5 mg/mL
technique(s)
immunoprecipitation (IP): 3-6 μg using MDCK cells., western blot: 2-4 μg/mL using MCF7 cell extracts.
UniProt accession no.
shipped in
dry ice
storage temp.
−20°C
target post-translational modification
unmodified
Quality Level
Gene Information
human ... MGEA5(10724)
Application
Anti-O-GlcNAcase (OGA) (C-terminal region) antibody produced in rabbit has been used in:
- Western blotting
- Immunoprecipitation
- Microarray analysis
Applications in which this antibody has been used successfully, and the associated peer-reviewed papers, are given below.
Western Blotting (1 paper)
Western Blotting (1 paper)
Biochem/physiol Actions
β-N-acetylglucosaminidase (OGA) along with O-GlcNAc transferase (OGT) are key enzymes which regulate cycling O-linked N-acetylglucosamine. OGA is responsible for cleaving the modification from target proteins. OGA is also glycosylated by OGT and a regulatory feedback loop exists between these two enzymes. OGA and OGT have been found to strongly associate together in transcriptional co-repression complexes with histone deacetylases (HDACs).
Disclaimer
Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.
General description
The β-N-acetylglucosaminidase (OGA) gene encodes two alternatively spliced isoforms that are widely expressed in mammalian tissues. OGA (also known as O-GlcNAcase, MGEA5, NCOAT) belongs to the family of 84 glycoside hydrolases. The longer OGA form is a bifunctional nuclear/cytoplasmic enzyme that contains two distinct domains, an O-GlcNAcase domain at the N-terminus and a C-terminal putative histone acetyltransferase (HAT) domain. The shorter OGA form contains only the N-terminal O-GlcNAcase domain.
Immunogen
synthetic peptide corresponding to a sequence near the C-terminus of human O-GlcNAcase (OGA), conjugated to KLH. The corresponding sequence is identical in human OGA isoform B, and highly conserved (single amino acid substitution) in rat and mouse OGA.
Physical form
Solution in 0.01 M phosphate buffered saline, pH 7.4, containing 15 mM sodium azide.
Not finding the right product?
Try our Product Selector Tool.
Storage Class
12 - Non Combustible Liquids
wgk
WGK 1
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Seokwon Jo et al.
Frontiers in endocrinology, 13, 1040014-1040014 (2022-11-18)
Protein O-GlcNAcylation is a nutrient and stress-sensitive protein post-translational modification (PTM). The addition of an O-GlcNAc molecule to proteins is catalyzed by O-GlcNAc transferase (OGT), whereas O-GlcNAcase (OGA) enzyme is responsible for removal of this PTM. Previous work showed that
Nutrient-driven O-GlcNAc cycling-think globally but act locally
Harwood KR and Hanover JA
Journal of Cell Science, 127(9), 1857-1867 (2014)
O-GlcNAc cycling: implications for neurodegenerative disorders
Lazarus BD, et al.
The International Journal of Biochemistry & Cell Biology, 41(11), 2134-2146 (2009)
Cell Metabolism Control Through O-GlcNAcylation of STAT5: A Full or Empty Fuel Tank Makes a Big Difference for Cancer Cell Growth and Survival
Rauth M, et al.
International Journal of Molecular Sciences, 20(5), 1028-1028 (2019)
Changes in O-linked N-acetylglucosamine (O-GlcNAc) homeostasis activate the p53 pathway in ovarian cancer cells
de Queiroz RM, et al.
The Journal of Biological Chemistry, 291(36), 18897-18914 (2016)
Related Content
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service