Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
Linear Formula:
(CH2CH2NH)n
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23
Product Name
Polyethylenimine, linear, average Mn 10,000, PDI ≤1.3
SMILES string
N1CC1
InChI
1S/C2H5N/c1-2-3-1/h3H,1-2H2
InChI key
NOWKCMXCCJGMRR-UHFFFAOYSA-N
form
solid
mol wt
average Mn 10,000
mp
48-53 °C
PDI
≤1.3
storage temp.
2-8°C
Quality Level
Looking for similar products? Visit Product Comparison Guide
Related Categories
General description
Polyethylenimine (linear) is a versatile cationic polymer with a high transfection efficiency. It is used as a gene delivery reagent. It is a non-lipid polycation that can be used to transfect oligonucleotides and plasmid into cells in vitro and in vivo.
signalword
Warning
hcodes
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Bromodomain and extra-terminal (BET) protein inhibitors suppress chondrocyte differentiation and restrain bone growth
Niu N, et al.
The Journal of biological chemistry, 291(52), 26647-26657 (2016)
Systemic linear polyethylenimine (L-PEI)-mediated gene delivery in the mouse
Zou S, et al.
The journal of gene medicine, 2(2), 128-134 (2000)
A comparison of linear and branched polyethylenimine (PEI) with DCChol/DOPE liposomes for gene delivery to epithelial cells in vitro and in vivo
Wiseman JW, et al.
Gene Therapy, 10(19), 1654-1654 (2003)
Marie-Elise Bonnet et al.
Pharmaceutical research, 25(12), 2972-2982 (2008-08-19)
The success of nucleic acid therapies depends upon delivery vehicle's ability to selectively and efficiently deliver therapeutic nucleic acids to target organ with minimal toxicity. The cationic polymer polyethylenimine (PEI) has been widely used for nucleic acid delivery due to
Dae Hee Lee et al.
Biomaterials, 171, 34-45 (2018-04-22)
Limitation of current anti-Vascular Endothelial Growth Factor (VEGF) cancer therapy is transitory responses, inevitable relapses and its insufficient tumor-targeting. Thus, multifaceted approaches, including the development of bispecific antibodies and combination strategies targeting different pathways have been proposed as an alternative.
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service