Sign In to View Organizational & Contract Pricing.
Select a Size
About This Item
CAS Number:
UNSPSC Code:
12352204
NACRES:
NA.54
EC Number:
232-602-6
MDL number:
Specific activity:
200-400 units/mg protein (modified Warburg-Christian)
Product Name
Glucose-6-phosphate Dehydrogenase from baker′s yeast (S. cerevisiae), Type IX, lyophilized powder, 200-400 units/mg protein (modified Warburg-Christian)
type
Type IX
form
lyophilized powder
specific activity
200-400 units/mg protein (modified Warburg-Christian)
mol wt
128 kDa
β-NADP and β-NADPH content
≤10 mmol/mol
application(s)
agriculture
shipped in
dry ice
storage temp.
−20°C
Quality Level
Looking for similar products? Visit Product Comparison Guide
Application
Glucose-6-phosphate dehydrogenase is used:
- To test ketose reductase activity in developing maize endosperm.
- For recycling microassay of β-NADP and β-NADPH.
- To measure the intracellular levels of NADPH and total NADP.
- To measure the nicotinamide adenine dinucleotide (NAD) kinase kinetic assay activity.
Biochem/physiol Actions
Glucose-6-phosphate dehydrogenase catalyzes the conversion of glucose-6-phosphate to 6-phosphogluconolacetone as the first step in the pentose phosphate pathway.
Glucose-6-phosphate dehydrogenase catalyzes the rate-limiting step in the pentose phosphate pathway. Its function involves the conversion of glucose-6-phosphate to 6-phosphogluconolacetone while generating NADPH, which is essential for the regeneration of glutathione The glutathione system utilizes nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) to effectively eliminate excess hydrogen peroxide. Glucose-6-phosphate dehydrogenase (G6PD) plays an important role in regulating cell growth and survival. Their levels are higher in cells undergoing normal and neoplastic growth. Increased glucose-6-phosphate dehydrogenase activity plays a pivotal role in preventing reactive oxygen species mediated cell death. Glucose-6-phosphate dehydrogenase is over expressed in several cancers whereas its activity is reduced in hyperglycemia. A deficiency in glucose-6-phosphate dehydrogenase causes hemolysis.
General description
Research area: Cell Signaling
Glucose-6-phosphate dehydrogenase (G6PD) is a key metabolic enzyme of the pentose phosphate pathway. In S. cerevisiae, it is encoded by the ZWF1 gene. G6PD exists as a tetramer in its active form.
Glucose-6-phosphate dehydrogenase (G6PD) is a key metabolic enzyme of the pentose phosphate pathway. In S. cerevisiae, it is encoded by the ZWF1 gene. G6PD exists as a tetramer in its active form.
Other Notes
One unit will oxidize 1.0 μmole of D-glucose 6-phosphate to 6-phospho-D-gluconate per min in the presence of NADP at pH 7.4 at 25 °C.
Physical form
Lyophilized powder essentially sulfate-free, containing approx. 20% sodium citrate
signalword
Danger
hcodes
pcodes
Hazard Classifications
Resp. Sens. 1
Storage Class
11 - Combustible Solids
wgk
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves, type N95 (US)
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
D Oh et al.
Molecular and cellular biology, 10(4), 1415-1422 (1990-04-01)
The Saccharomyces cerevisiae GAL5 (PGM2) gene was isolated and shown to encode the major isozyme of phosphoglucomutase. Northern (RNA) blot hybridization revealed that the GAL5 transcript level increased three- to fourfold in response to galactose and was severely repressed in
An improved cycling assay for nicotinamide adenine dinucleotide.
C Bernofsky et al.
Analytical biochemistry, 53(2), 452-458 (1973-06-01)
A simple ultramicro method for determination of pyridine nucleotides in tissues.
J S Nisselbaum et al.
Analytical biochemistry, 27(2), 212-217 (1969-02-01)
Pranavi Koppula et al.
Nature communications, 13(1), 2206-2206 (2022-04-24)
Targeting ferroptosis, a unique cell death modality triggered by unrestricted lipid peroxidation, in cancer therapy is hindered by our incomplete understanding of ferroptosis mechanisms under specific cancer genetic contexts. KEAP1 (kelch-like ECH associated protein 1) is frequently mutated or inactivated
D C Doehlert
Plant physiology, 84(3), 830-834 (1987-07-01)
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance
Related Content
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service